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Neural-Network-Based Stochastic Scheduling

Control of Unknown Nonlinear Systems
Huihui Ji*', Shengyuan Xu™, Senior Member, IEEE, and He Zhang

Abstract—This article addresses the problem of stability of
unknown nonlinear systems with a stochastic scheduling scheme.
In order to solve the difficulty resulted by the unknown nonlinear-
ity, the neural-network approximation technigque is introduced.
Notice that for the controller design of uncertsin nonlinear
systems, numerous simulation studies and actual industrial imple-
mentations show that the neural network is a good candidate to
handle the design difficulty resulted by unknown nonlinearities.
The feedback contrel signal in this artide is produced based on
periodic sampled data. In the stochastic scheduling scheme, both
the choices of controllers and their execution time allotted to the
scheduler are random. Sofficient conditions hased on the proba-
hility distribution of almost sure stability are obtained by using
a general Lyapunoy functional and some stochastic techniques.

Index Terms—Almost sure stability, neural network, stochastic
scheduling. unknown nonlinear systems (UNSs)h

L. INTRODUCTION

N EMBEDDED systems on the same platfform, a general

trend can be observed o implement all kinds of concurrent
real-time (HT) tasks, thereby reducing whole hardware costs
and development time. In these tasks, the implementation of
the control algorithm has to be highly time critcal and has
usually taken a wery conservative scheduling approach that
statically allocates execution time. A result 15 produced that
the overall architecture is often poor performance because it
is very rigid, difficult to reconfigure for component additions
or changes.

In the current automotive field, embedded electronic con-
trol unit (ECU) usually needs a multitask RT operating system,
which dynamically schedules its tasks to mect to requirements
both quality of service (QoS) and different load conditions.
RT preemption algorithms, such as rate monotonic (RM) and
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the earliest deadline first (EDF), can suspend the execution
of a task when there are other higher-prionty task requests.
In a hard RT sysitem, some conservative assumptions, such
as the estimate of worst-case execution times (WCETs) for
tasks, are presented to keep the schedulability of given tasks
and avoid missing deadlines. These assumptions will lead to
inadequate development of computing platforms, thus reduc-
ing cost efficiency. Conversely, in industrial practice, where a
given budget for computing power is required and fixed, the
control algonthm must be greaily simplified so that it can be
caleulated within a specified ime. This will degrade the whole
performance of the controlled system. As a current trend, the
design of embedded systems is to relax constraints of schedu-
lability and to introduce computation models (ie.. “weakly
hard™ [2] and “resource reservations”™ [1]). Both branching
depended-data-driven and using pipelines result the differcnt
execution times of tasks. Here, while the execution time of
tasks would vary greatly, occasional deadlines can be toler-
ated. Difference from using the total WCET boundaries, a
method based on (JoS metrics is used to quantify the aver-
age miss value and the random distribution pattern, in which
approach of design constraints according to QoS metrics are
typical [3].

A. Motivation

Under the environment of soft RT, a sirategy for design-
ing and scheduling linear controllers is presented in [4] to
control a discrete-time random jump linear system (RILS).
It not only overcomes the limitation of existing practice but
also allows for beter development with the same resources.
Instead of analyzing RILSs, Wang and Sun [5] considered
a class of continuous-time RJLSs. The problem of cxponcn-
tial stabilization of RJLSs in almost sure sense is studied,
where the systems are controlled by linear controllers via a
random scheduling scheme. By applying a limit idea w the
random transfer matnx of RILSs, sufficient stability conditions
of closed-loop RILSs are obtained and those conditions are in
the forms of linear matnx insqualities to easily solve the con-
troller gain parameters. Especially, considering the dwell ime
of random jump mode and the probability distribution char-
acteristics of random scheduling, it is verified that they taken
positive roles in system performance. However, it 1s worth
mentioning that the above results are obtained by analyzing
the explicit solution of the discrete- and continuous-time lin-
ear systems. Those analysis methods are hardly to applied
into nonlincar or hybrd systems because their solutions arc

2168-T216 ) 2023 [EFE. Personal wee is permitied, bei republicationiredisiribution regquines TEEE permission.
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too complex to analyze directly 1in such case. Motivated by
this, the problem of stochastic scheduling control on unknown
nonlinear systems (UNSs) is studied.

B. OQutline and Contribution

In [6]. [7], [8]. and [9], the scheduling process 15 realized
by event-triggered schemes; Hu et al. [10] focused on the
problem of preassigned-time synchronization and design an
interesting control scheme with accurate estimates of the set-
thing time: further, to improve the estimate of scithng tme, the
fixed-time control scheme is proposed with reducing the chat-
tering caused by the sign function [11]. Notice that the above
works are only time scheduling. In this article, the studied
UMNSs are continuous-time with sampled-data inpuis, where
the resources are scheduled by allotted execution time and
allotted controller gains. To overcome the difficulty resulted by
the unknown nonlinearity, an approximation technique based
on the neural network (NN 1s introduced. Currently, the NN-
based approach has been rapidly developed and successfully
applied into control domain [12], [13]. It is always observed
from a large number of simulation research and practical
indusinal implementation that NNs are very effective in han-
dling unknown nonlinearity and the controller design of UNSs.
Different from [4] and [3], the feedback control signal in this
article is produced based on periodic sampled data, which is
the other reason of analysis complexity of this work. As onc
of the most powerful analysis approaches, a delay system is
introduced to solve the problem resulted by sampled data. The
main highlights of this article are as follows.

I} A suitable Lyapunov analysis method 15 given to over-
come the difficulties resulted by discrete-time inputs
and nonlinearity, these difficulties are not solved by
approaches given in [4] and [5].

2} Stahility cntena are obtained based on the probability
distnbution of the random variable on the allotted pro-
cess by using a general Lyapunow functional and some
stochastic analysis technigues.

Notations: " 1s an a-dimensional Euclidean space, R™*™
is a sei produced by all of real matrices with 7 xm dimensions,
AT is the transpose of matrix 4, A < 0 implies that matrix A is
5 m&n&tric negative definite, Symjd] = A +AT, diagfx.v. 7] =

x

0y 0|, and [[A]] 15 the norm of A.

i

II. PrOBLEM FORMULATION AND PRELIMINARIES
A. System Description
Consider a class of UNSs governed by the following

ordinary differential equation:

x(r) = Ax(#) + filx(r), 1) + Bulr) n

where x € R®, w € P, and [ < R" are the state variable, input
variable, and continuwous unknown nonlinear function of the
system, respectively; and A and B are known matrices with
appropriate dimensions.

B. NN-Based Approcimation Model

For addressing the control problem of the UNS. the
unknown nonlinear function f should be handled. Notice that
NNs are widely studied and applied [14], [15], [16], [17],
[18]. [19] because their effectiveness has been verified in han-
dling unknown nonlincanty and the controller design of UNSs.
Motivated by this, a multilayer NN in this article is applied
into leam the unknown noalinear function.

Under zero bias terms, a mululayer NN, including one
hidden layer, is considered. It 1s given in the forms of
matrix—vector

fan(xiny, 1. M1, M) = Mo (Myxir)) (2)

where fip € B? is the NN output; M) < B"*" is the first-to-
sccond layer interconnection weight matrix; Mo € B"™ s the
second-to-third layer interconnection weight matrix; sy is the
number of hidden neurons; and vector function o : B —
R is the activation function given as follows:

wiy) = [min) @) --- (o)’

where ¥ = [}'[ ¥z -0 ¥m r—. the activation function denoted
by o (1 = 1. 2. ..., m) 15 of the newron 1. Here, mj 15 assumed
to obey the following conditions.

Assumpticn 1: Throughout this paper, the activation func-
tion & satisfies the conditions as follows.

1} o is smooth everywhere.

N Fory e Band g > 0 —q; = ovlw) = g; and

WJ'(}'E)'},'-IJ =0.

Based on Assumption |, the bipolar sigmoid function given
in [20]. which is associated to the origin. 15 chosen by this
anticle as follows:

(3)

gill — (-)'-fd}

1 4 e wildh
where g; and &; in the ith bipolar sigmoid function are two
positive numbers. The key of approximating unknown nonlin-
ear function is to train the NN (3) Using the backpropagation
procedure, all connecting weights of the multilayer NN are
determined by a leaming rule.

Following the approximation theorem of multilayer NNs
given in [21], with giving & = 0, the desired parameters M7
and M3 can be obtained by

4

¥ =

(M7, M3) = mgud'?.iﬁzl max|IF (xif). £) — F(A). . My M)l

such that

rjﬂgﬂ;lh"{r{f). 1) — flxr, 1 My M3)|| < 8] |xin]] {3

in which T is a compact subset of R".
Let minifyi) = ([dari(yi}]/dyi). Its boundary values are given
as follows:

dim = n}];n Vi), s = max i (¥i). (6]
It is easy to see that
m; (%)
T = [ﬂ'djh 11'1'.."] (7

Aumonzed licensad wse limibad too Manfing Tach Unihversiy. Downioaged on March 07,2024 at 16:01:15 UTC from IEEE Xpicre. Restictions apply.
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which implies that
(i) — b ) (morilve) — dhimys) = 0L (%)
From the bipolar sigmoad function (41, one has é;, = 0 and

e, m = g/ 2d;).
The following system approximated by NN (3) is derived:

(i) = Axir) + Mizr (Myx()) + s(x(t)y + Bult) (%)
where e(x(r)) = flxin. 1) — Mo (M{xin).

C. Scheduling Control Scheme

In this article, a sampled-data-based scheduling control
scheme is considered, where the sensor is periodic time-driven
with a given sampling penod T, the controller is event-drven
and stochastic scheduling.

Let #(t¢) be a discrete-ime Markov process signal with
a finite jump state set £ = (1.2,...,m] and proba-
bility distnbution P = [p1 ---p,,_,] and rifg} be also a
discrete-time sm'bdungi signal with fimite switching state scts
lielg = (1. litl} and probahility distribution g =
[r"'lcn '“'nr; r"'ﬂr ] forig € £. "“r be a scheduling con-
trol protocol, where there are i (w-iﬂl it € L) controllers
allotted sequentally, but the exccution time of cach allot-
ted controller is given randomly, here, we choose the i th
(with i, & "R} group of the excowtion time allotted the
scheduler under random jump state iy, Lc’trj!lT' be the execu-
tion time of the jth controller for i, IR LLI'Il-BJ' the random
jump state 1y € L. Thus, consider the penodic sampling
scheme and the sampling interval [f, fk+1) can be divided into
it subintervals

lielp, [,h £ 4l -;m)
2
e+ Tt o+ Zlqliﬁ)

{:HE lebps i+ E""T")

where ig € £, iy € R, and fp41 = fp + E |1=|T")

In order to clearly show the logic of 'r.hc mn m control
mechanism, a simple example is introduced in Fig. 1. In view
of the figure, there are three allotted controllers (my = 3). and
two groups of the execution time allotied the scheduler under
random jump state 1. The top subgraph shows the response
of Markow jump varnable #ir) by the fine solid line and the
subgraph below shows the response of random vanable ri)
by the big solid linc. In addition, the choice method of three
controllers 15 shown i the subgraph below, where the three
shadow modules represent the execution times of three con-
trollers, for example, take the interval segment [i7. i3) - m?ﬁl
15 the execution ime of the st controller under Markov jump
state £{f}) = 3 and random jump state rif}) = 2; ”‘l’ﬁgl is the
execution time of the 2nd controller under Markov jump state
£(t) = 3 and mandom jump state rit) = Z; m'i'f%' is the cxe-
cution time of the 3rd controller under Markov jump state
£(t) = 3 and random jump state rif) = 2.

£

3
Jo—
[ 1 ) I ! ! !
: : 1 : 1 ! |
L3 [ iy J,: (L.
N
A - : ' : ' ! |
' 1 Bk
T I 1 | 1 ] 1 i
1 1 1 |
' apa o [ I -
[T [ .
: o \:|I \|.| : Tl E K,
1
: :
SN

0 N Y F
r'-nnl ”1;, oy T, uhu . mn ,I‘ rTr g ,.t_,l g

Fig. 1. Diagmm of stochmstic scheduling control.

In this article, for £ifk) = ie.rite) = ir, and | < i = iy, the
following stochastic scheduling protocols are proposed:
ey - ugt) = Kjg ()

te {rﬁzr"'ﬂ u+E“"T") (1

=1

where it is defined that 35, Fel T = 0 for ic = 1. Ki)
is the controller gain under the icth allotied execution time
interval.

It is considered that controllers on cach growp allotted exe-
cution time are executed sequentially, which means that the
kth controller does not execute until all i controllers (i: = k)
have finished.

Remark !: Motice that the Markov chain £if) and random
switching signal rif} are apeniodic, irreducible, and ergodic,
which implies that each jump mode of Markov chain £(1) or
random signal A{f) occurs frequently as the vanable ¢ goes o
large cnough.

Remark 2: In this article, the occumrence of cach jump
mode of Markow chain £(1) is not affecied by random switch-
ing signal rit). Conversely, the occurrence of cach jump mode
of andom switching signal rif) is governed by the Markov
chain.

Let 7(t) = ¢t — 1 for + € [ te1) and e, ne41) =
U!(l‘ﬂlulll.l'[l'ﬂ- where rullﬂm — [Ik + ZI: '||'Jg|Tr4M I+
E" rjll’||""”“]| It is clear that 0 < () = T, whﬂc T.
slands feu' ﬂ'u: sampling period. Based on the ahove analysis,
the following closed-loop system with scheduling controllers
is obtained:

ity = Ax() + M3 (M7xin) + £(6)
+ BEj rir — tin)
te ""Il’gi’. i = £itg).

(113

In what follows, almost surc stability of the system (11}
will be discussed.

Aunonized lieensad use limited o Maning Tech University. Downloaded on March 07,2024 at 16:01:15 UTC from IEEE Xpiore. Restictions apply.
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Definition | [22]: The stochastic system (111 is almost
surcly (a5.) exponenuially stable, if there exists a number
g = 0 such that for any inital condition one has

P lim sup — InILmJII < —f

Remark 3: It is worth mentioning that if there exists a
positive real number 8 = 0 such that Inlxin|| = —gt
holds, then one can obtain [x(n] = e ™, which implies
that [[x(f)] exponentally converges to zero as the vanable
t poes to infinity. Then the system is exponentially stable,
Simalarly, if there exists a posiive real number § = 0 such
that Pln ||lxiry] = —pr} = 1, that is to say, Inlx(n)] < —gt
holds with probability 1. which implies that the system is as.
exponentially stable.

I, Man REsuLTS

A Swability Conditions of the Closed-Loop Svstem

Theorem I: Let Vi) be Lyspunov functional along the
closed-loop system (11} on sampling interval [f. f541)
:ffil‘llllnm where rl'lllm":l = [t + E"' ”"ITHET
E" r"'T"’(“) If there exist m real FII.LI'JIhEIS ) (=
,'Z _____ m), real numbers g :—ﬂ,ﬂ}ﬂmdasymm:mc
positive-definite matrix 2 such that

+II

px(e)" Qxir) = V() = pxin) Qx(r) (12)

Vi = n-,”“*”n-,‘xu} Ox(r), 1 MY (13)

( ) E'Mr + Epuﬂr'"' E E"x}“m{“"?ﬁi) =0
=1 =1 Vi1

(14

then the stochastic scheduling scheme can keep as. exponen-
tigl stability of the closed-loop system (11).

Progf: For ¢ € WIE® from the given conditions (12)
and {13), it is derived based on Groawall’s inequality that

. T .
b b

¥ ,*_'_Elémlmﬂﬂ O tt+E""‘”Tl}f"'
=1 J=1

e W
=L o[+ 3 v

i1

i—1
* Qx(u + E”ﬂ‘”'i;;‘”}. (15)
=
Since Vir is a Lyapunov functional along lluc closed-loop
system (11} on sampling interval [ig. r*;rl} 15 continu-
ous on the time interval. For r € |‘|f|I|"':ti from the given
condition (13). one has

it] T il
s _Zl:w'n'rﬁr‘] x4 3 g
=

J=1
E TN

; T
i
& ] I I‘i+£ I:(uﬂ-rﬁnl)

=

™| T

=

i
% Q.r{ra +¥y ““‘]]Tﬁ"']
=1

~ L] e [["‘HIT"U) )
T = = T -1
- (%) e[: } . i ;(:t + E'““Tuﬁm)

J=1
-1
x {-'x(r; +3 "‘“"Tﬁ"') .

=

T

(16

Thus, for ¢ € [#g. fg+1). one has
witgs 1) it 1)
i Hrm]) zf.';“,i’-u([*‘"’]Tﬁ’“)
<(5) - '

which implies that for ¢ € [0, f1 )

x(tee1) Qxltir1) <= yrxiteo) Qrite1)

xie) T 0x(r)y (1T

< yaxito) ' @r(in) = yaxito) ' Or(n)  (18)
where
('ﬂ)ﬂgiﬂ i H:'t ||: fml}z 'l“'l.l'll:]m"T[."I I:'
n=[%
A
(Iﬂ-)ﬁ*ﬂu £ I;tq(nltlml}z»!‘;:?lﬁumtllmlraﬂl:l
n=\|-= [
[

st EalE

The following work is to verify 33 = | in (18), which can
guarantee the closed-loop system is stable.

Let Ny, be the number of random vanable £(8) = i; and
Nyiypi, be number of mndom variable ri#) = i, for @ € [tg. ],
ig € L. and i, € R. It 1s clear that

m
¥ N =k+1

=1

mg my
3¥ M =k+ L
g iy
Without loss of generality, the random sequence
Y@, [ei)]. r(6)) = (@} T4 oy ONTEOy g =
[ . ti] is reorganized and reo as follows:
{?(ﬂ-[ll-ﬂﬂul o=sll

1]
RCAC RO EEE S SR |

' ) _ Jme] ] my|
{}'qa. [mel. rigy] 8 = s sbl ’Jr.r,_,, |
over, the mndom sequence (YIA. [iel. r(8))] 6 =
J.:.Ellj for i € L, is reorganized and reordered

as follows:

Ir(s_ ligl. 1] & = alfe! glie) i }

] : Nir)
Il"(ﬂ.[f.g].'2| 6 =nalitl gl ol *I,}

[¥(o. lied.mol & = )l ).
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Based on the above analysis, it is easy to see that N, — oo
and Njj,)i, — oo hold for i € L, ir & R g k — oo for
the sequence [fg. k > 0]. Thus, it is derived that

N
E ¥eg. 1], rig))

:'i,',,

' i 3 Fie. 20 rie)

o

(19

Ii -
T

E ¥Yig. [mg]. (@)
Lo

Based on the strong law of large numbers, it is clear that

N,
lim lixl

Miatic _ 1)
k= k+1

e (200
Nip— oo NII!I

= pi.

A
Lo Y@ NLi

Ny - n"mum{mmr'}'

(21

Thus, one has

Al

N

Z Yie, [1). rig))
1l

G

dm
’JJ'[IH
Yia, [1], rig
) EE_,{H @, [1]. rigyy

|-I

H
Zﬂ AN Yig, [1].4)
. N

M,

[ xg Ny

= Iim(
k—oo
1,1 i
a3 o (M7 ).

=1

Therefore, similar to analysis (22), one has

m }+ l Z{ Itaml} §“u1(llcﬁjlm83)
_ EPJ:“[“ E Eﬂm(lulrpr}gb

ir=1 el j=1

) Bt (), 2

e N

(22)

(23)

In addition, using the strong law of large numbers,
one has

k—'\-ooj.'+|.

o(f) o -n(F) om0

Based on the given condition (14) In(f/8) En_l:.:pq +
Eaiipier” Timy Ty ap(®Tio;, < 0, one has that
xte+1) T Qi te41) ﬁxpun:nuﬂly converges io zero point, which
implies that conditions (12)-{14) can guarantee as. exponen-
tial stability of the closed system (11). | |

B. Design of Controller Gains

In the following, a design method of scheduling controller
gains is given according to Theorem |. Let us start with the
following two lemmas.

Lemma 1 {23, Corollary I]: Let xif) be a differentiable
function: [a. k] — R*. For given integers m, N & M satisfying
m = N, matrices B £ 85 and M; € B { ¢ |0, 1,2.3), the
following inequality

]
- f i) Rils)ds < # i (25)
holds, where

o = [x(h)T xla)T 2 2]

] b b
2y =f xi5)ds, 5_31=f f x{sz)dspdn
o = f f f clay)dsdsady

®= E

nu—fl—fz

T+ E MiTL; + (M) T

=il
My =e) +e3— 263

My =g —eg+6€1—6€4

M3 = ey + £3 — 1223 + 30y — 20e5

€ = [ﬂumi—l]u iy ﬂﬂxis—ﬁﬂ]*i =L2....5

Lemma 2 [24], [25]: For any vector £ € R™, matrices

Ri.R; € 8F, § € R™", W, Wy € R, and real scalars
a =0, f = 0 satisfying & + § = 1, the following ncquality
helds:

| I
E-‘ETW]T-'El WiE + EHW—IR;Wﬁ

T r
[Wi] [/ §1[W
z¢ [w;] [57 :;-2][% £

Theorem 2: Consider the closed-loop system (11} with ini-
tial state x{r} = 0 for ¢+ = 1y and the sampling interval
[ te1) = u‘”‘”‘!'[”‘*’ defined in Theorem 1. Give the
execution  time qu;rl'l {""T"l} real numbers B = 0,
f = 0. matrices H-"IJ‘ H-"lj‘l The closed-loop system (11)
15 as. cxponentally 5ub|c under scheduling controllers if
there exist m real number oy and 35 = 0, symmet-
ric positive-definite matrices (3, By, B2, B3, Ry, Py =

Aunonzed licensed Use imited toc Maniing Tech University. Downloaded on March 07,2024 at 16:01:15 UTC from |EEE Xpiore. Resticions apply.
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I.I:pJLJ}_'.:E-EPI.UI, and matrices 5} (fz € £) such that 1] {f iis) R]_risjdj — —Tzf {xis) —IU'tJJ
or iy
60 =Ry = fg (26) ® Ryfxis) — xit; ))ds.
mlkl mlkl : . Taking the derivative of Vif) on ¢ € IJ"["‘““:l defined in
{m“} =0 i=12 m 271 Theorem 1. one has that
v ey Vie) = 2i(e)"Ryx(s) + x(e)" Raeis)
(‘”M) e (2% — xtt — To"Rastt — To) + (0" (Rs + ToRa)iin)
’ 2
] - :_]-1{1{') — x(ta ) R3 (x() — (i)
In( )Z'ﬂpﬂ"'zp “.Dulzl,Jrj E”lﬂ Iul-:r[lr_I :c
v - - v N f 05 Ryi(s)edss. (31)
(29) =T
where @) = [Dne 13 In Onego—tin]- [ = 1.2..... 10 Based on Lemma 1, it is easy to see that
L]
o = syml A R +f (R ol Q)er - f #5)T Ry (shds
T

- E5Rm5 + em{ﬂa + TcRa)en

f I
o Th - P
- A_IHTE (21 — ) Ra(m —a) + S}'m[.l-d'"'"(m - &l}} _,’; *s) Raxts)d — jr-—T, 3a) Raslspdsz

ey + ol wltle 32
+ Sym| Ml er + o1 — 200) =Tt R 2
+ Sym| M o1 — s + Geg —6e) | where 041 = (2, Jp, xtup)dupdun ]/ 1)) and
+ Sym| ey — e5)| + Sym| i}l s + o5 — 2en)] o { x(t) W
] t—T;
+Sﬂﬂ‘ﬁfg*’1{ﬁd — &5 + feg — IS“-’w]l ’V i) -| - ﬂll]ﬂ')ll
. i ,I" o fr= LRI
—Srm[l{@?‘s“‘“‘ﬂﬂeu Piijlez — E-uh‘im}} |_ fa J |_21':.‘T..Jf-| aqundtydny J
e—T
+Hi:l{ﬂze{ﬂ!l—ﬂ!§&3} » » [T
li i, 47 : Ti”M*‘rl{M*‘} Ii]
+53'm[{“']"’ )+ W) elﬂ] (A —EluJ} v = ET +Esymlﬂ!" I'[t}
I=0 J-IJ

fil _ glil T g

W =& - Syml A e 1o { Gyl
2 — rifvifliEl gt gylic)

Alil = Ae1 + Mo + 03 + BK; ot -5 L {M }

ol = [Mﬁi’l M) D gl gyl ﬁ%m] i e+l

2
il _ [ %32 i) el e 2, 3 Ji] o
3" = [SlTu ¢35]' g —dl-ag{ TCR.;. T Ry, T R.s} - ESymIﬁ, nel. Mg=e) — 2
By, = dja&l_?lnd- _?3&‘. _?jﬂdl' M =e +e— 2#‘3. Ma=e) — e +6€; - 6(4
‘ ‘ ‘ ) gi= [ﬂnx:i—lu I ﬂ“ﬂ_,-,,].i =1,2,3,4
Proaf: Let iz = ¢ — t(). Construct the following Lyapunov
functional along the closed-loop systems (111 on i, tk+1): In view of conditions (3) and (8), one has
]
Vi) = xir)"Ryx(n) + f x(5) T Royx(s)ds (= (Mx(1)) — SainMixin) P
oo o x (o (M x()) — BmaxM]xit)) <0 (33)
* f He) Ryt (aps Pig(F0Tx0 — eenTemm) =0 (G4
1
;1.]’9 (xlfsj — x0T Raixis) — xitg ))ds where Prip = d.ia,glP‘f.‘l. P!zi.rl _____ PE"J = 0 and 374 = 0.
Based on the closed-loop system (11), for matrices H’!i‘l
+ f f i(52)T Ryi(s2)dlszddsy (300  and WL, one has
T <

where R, B2, R3, and Ry are positive symmetric matrices with il il h T .
appropriate dimensions. Based on Wirtinger’s ineguality [26], {H"I xi) + WIE I{r)) {Ax() + Mip(Mix(n)
one has + elf) + BEp; ity ) — &(r)) = 0. (33)
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Based on the above analysis, one has
Vin) = a) ey win T0x(n

plic] (mri.-l)T
+a@T| "L AT i (36)
n { of 3 n

- [és 0
wh:n:tbg_l: 0 iiJ‘mil,a.m:l
i ) 1 3 5
— ding]—— Ry —— R, —— R
P “""[ ST TR ’I
-1 -3 -5
Rs. Ry, R
o T —mn YT —t) "]

Py = d[ag[ A

nir) = [x{r)' w (Mixn)" s xie)T

B T
lllz,lmjrd:ul 1}:‘ E_Ilin] ahuadu

xft =TT

Tin Ty
S ot ey 2[5y ) B Tdundin o
Tt (Te—zitn’ |
Since

- | & Ry 3Ry SRy
wh:ﬁ 18 _E-_¥1_E
- I, —Ry  —3Rs —5Ry
Pw = ?dl“[ To—min " Te—mity * To—1in I

c I: 3 c

applying Schur's complement into the condition (27), one has
. . Ty T
0> o - ol¥l( ) (al)
. . =1 . T
>y ml}u{ ﬂ"f"] (mrlj,l)

where the last inequality is from Lemma 2. Applying Schur’s
complement into the last inequality, one has

(37)

(38)

. T
li:] Ii:]
o (22) | .o (30)
ol @,
which implies that conditions (26)—{29) can guarantee
Viry < el ™oy prin TQx(). (40)

In addition. we should verify ¥ir) = Viri— fxin"Qxin) =0
to ensure the choice of Vi) satisfies the condition (12). It is
easy to see that the conditon (28) can guarantee Vin = 0.
Since x(r) = 0 for 1 < r, one has Vi) = xio)"Rixim) and
Vi = Vi) = 0.

Therefore, according to Theorem 1, the closed-loop
system (11} 1s as. exponentially stable under stochastic
scheduling controllers. . | |

Remark 4: In view of ih'."" in Theorem 2, it is easy to see
that the controller gains Kj; ) are coupled with auxiliary van-
ables Ry, Wi“l_ and H"%“I_ which implies that these pains are
not directly obtained by using the linear matnx inequality tech-
nique. To solve this difficulty. the method given in [27] is
adopted and shown in Fig. 2.

Irperiential Taluas
Koy ot g, m
Rasst the
ArABELEES

Warrin [reqeslivied

12827}
_—_._—_
- -
Aucllisry satrices 'd IF shite 1% m
X g it L, M et o feaible slution,
A i

— —~—.._\
i:_\_ll-@ “‘."i:l‘.,-/.—lw

Block dingram of the contmoller gain design.

Mazria dnecuslities
[

Fig. 2.

IV. NUMERICAL EXAMPLE
In what follows, the obtained results are used to solve
the problem of sampled-data-based temperature control of a
catalytic rod. Similar w [20], a thin and long catalvtic rod
in a fumace is considered, the spatiotemporal temperature
evolution of catalytic rod i1s governed by a parabolic partial
differential cquation as follows:

awiz. I Awiz.t = .
B )

+ Beib1(Zim (f) + brizyunit) —wiz. 1)) (41)

with the following boundary conditions:
will.fj=0 wix. =0

where w is the temperature in the reactor, gy is the heat of
reaction, and B is the heat transfer coefficient. w1 and w2
are the manipulated inputs. Here, we consider the following
values of the process parameters:

Br=50 fuv=2 y=4

2 2
biiz) = J; sinfz), baiz) = J;ws{ﬂ-

Applying the Galerkin method into system (41), a two-
dimensions ODE model is denived as follows:

oty = Axi(t) + Fix(n) + Buin (42)
xin) =[x 1) 2]

Fixith) = [fi (0 fotxin)]”

Atxith) = —Bymin +fitn)

O R G ™
0

faixith) = —Puxif) + ity
B = ﬁrf ﬁi:](emﬁw . ,-r)d:
0

@1 = ;EIJ'I{Z}, M= ;sm{l‘_]

[ e-f54]
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A. NN-Based Approximation Model

To approximate f(x(r)), an NN (3), including 16 hidden
newrons, is uwsed with g5 = | and di = 0.5. The offline
training approach is used to obtain the connection weights
by BP procedure, where the values of x) are taken from
[—0.3533, 20.1467] at a step length of 0.5, and the values
of x3 are taken from [—0.9, 0.9] at a step length of 0.1, After
2006 cpochs with 2 typical error 1072, the upper bound of the
approximation errors given in (3) is obained § = 1.7091, the
weight matrices M} and I{Hi}T are, respectively, obtained as
follows:

[—3.7786 04564 | [ 00086  —0.0366 |
03962 0.0217 —22085 —4.1300
08566  —0.1062 —0.3442 13880
—1.3327 00627 09374 4.1924
54544 05729 —0.8907  3.0755
—0 7134 01173 —0.3266 —1.8385
—2.5825  0.0010 13607 0.193
—LBII&  —0.0080 48347 —08320
—1.5137 —00139 1 ' —p9sp8  —03s81 -
13477 02251 18078 T.8632
—5.0764 05389 —0.4219 14683
—24330  —0.5777 02368 15073
—TT20 06448 04103 —1.2150
—RBITO 086 00765 0.2354
—49027 00196 05211 0.1299
70906 06463 | | 08224 —2.6087 |

B. Scheduling Control Scheme

In this application, there are three controllers to be stochas-
tically scheduled, where stochastic scheduling signal £(rg) is
with a finite jump mode set £ = [1.2,3} and probabil-
ity distribution P = [_o. =013p=036p = 0.491. The
switching signal r(fy) of the execution time allotted by the
scheduler is with finite switching mode sets WR = (L.1),
IR = (2.1, 2.8). BIR = (3.1, 3.8}, and associated probability
distnbutions

Mo = [0 =1]

Mg = [oy21 = 045 0225 = 053]

W = [oa30 = 054 03,05 = 0.46].
Here, we take T, =ty — #; = 10k and h = 00002, The
execution intervals allotted by the scheduler are

ry [t g + 10k)

By s (e e+ 400, [0+ 4h, 1+ 6h)

ey ot + Bh. [t + 8k, o + 100

BIry ;g g+ 3k, [te + 3.0 + Bh), [tg + Bh. 1y + LOR)
Py [t + 300 [+ 5k + Th, [ + Th o + 10,

With taking the following parameters:

g _ [[0:1098  —0.00007 [ 0.0055  —0.0000
1=|_pooor 01763 | €= |_00000 0.0089
will _ [0.0499 —0.00017 pamy _ [-0.0132 —0.0004
U7 [—oo0l 00012 T T | —0.0004 —0.0062

Vabseo of e saables s, and i,
& W

: 25 3 Ak 4 45 &

Toron t

1o
Fig. 3. Tmjoctorics of open-loop system (42).

BE[

2
=

=

B
=

Valyes of the warlables. 3, and
B
7

=

|
= ——— ——r——
G oneS 01 fI5 0 G35 03 O3 04 045 65
Timat
Fig. 4. Tmjectores of closed-loop sysicm under the proposed siochastic
scheduling contral.

pid _ [0.1231 00001 7y _ [0.0005  0.0000
L~ (00001 —00326] 2 T |0.0000  0.0096
wiz _ [ 00002 —0.0001] L _ [0.0010  0.0000
T T 0000l 00062 0 2 T 00000 0.0108
it 15 derived by using Theorem 2 that

ko [-1785438 1068l

=1 1081 —15.0355

Ko _ [-193.7567 23918

=1 _23018 205714

Ko [F1371727 09542

BI=1 _po9s42  —12.3555

o ey = —01.8077, oMy = 2.8727
ay ey = —132.4230, al e = 7.2613
o) ey = 838243, oy = —36.1840.

Simulations: Take the initial condition of the catalytic rod
system (41) as follows:

wiz. 0} = u.usﬁ sinfz) + n.st sin(2z).
hr g hr g

Applying Galerkin's approach into the initial condition, the
imtial value of ODE model (42) 15 obtaned as x(l) =
[U-US ﬂ-'ﬁlr. Using the obtained controller gains and schedul-
ing scheme, state trajectorics of open-loop system (42) are
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Fig- 7. Respomse of stochmstic mode rif) € 1797,

shown in Fig. 3. It is clear that open-loop system (42) is unsta-
ble at xif) = [00]". Using the proposed control method in
this article, trajectones of the controlled system are given in
Fig. 4. In view of this figure, two trajectonies converge to the
zero state after time ¢+ = 0.3, which implies that the schedul-
ing scheme can guaraniee as. stahbility of the system. The
response of Markov mode £(1) € {1, 2. 3} 15 shown in Fig. 5.
The response of stochastic mode rir) € 'R is shown in Fig. 6
under Markov mode £(1) = |. The response of stochastic mode
rif) € *IR is shown in Fig. 7 under Markov mode £(1) = 2.

-

B

E =

P

Wiode seapanen of nif under wkie=d

I
&

L RLAIREL R L I IR
285 ¥ A8 a4 af

Tira b

PErTE s

Fig. 8. Response af stochastic mede rif) € P

The response of stochastic mode r(r) € PR is shown in Fig. 8
under Markov mode £(r) = 3.

V. CoNCLUSION

The problem of stability in almost sure sense of UNSs
with a stochastic scheduling scheme is studied. Since numer-
ous simulation studies and actual industnal implementations
show that the neural network is a good candidate to handle
the design difficulty resulted by unknown nonhncanties. In the
stochastic scheduling scheme, both the choice of controllers
and their execution time allotted the scheduler are random.
General sufficient conditions based on the probability dis-
tribution of almost sure Lyapunov siability are obtained by
using some stochastic technigues. It 1s worth mentioning that
the phenomenon of packet disorderng often occurs for the
networked system when the data packet is over the communi-
cation network. Inspired by this, in future work, the problem

of anytime scheduling control is going to study under packet
disordering.
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ARTICLE INFO ABSTRACT

Article history: This paper studies the problem of the distributed networked sampled-data control for a

Received 13 September 2020 class of distributed parameter systems with spatially-dependent diffusion term. In view of

ieV'Sid dg ]F;l;"é“y 20%21 limited fixed sampling spatial points, the distributed sensor network is proposed to ob-

ceepte repruary tain the sampled-data measurements of the state which can efficaciously circumvent blind
Available online 19 February 2021 : :

sampling area or sampling error. A distributed sampled data output feedback controller

based on the distributed sensor network is designed to ensure the stabilization of the dis-

Keywords:

Distributed parameter systems
Sampled-data control

Sensor network

Time delay

Exponential stability and stabilization

tributed parameter systems with the time delays induced by the communication network.
Based on Lyapunov method, linear matrix inequality technique and time-delay approach,
the global exponential stability criteria are obtained for the closed-loop distributed param-
eter systems under three different boundary conditions, respectively. Finally, the numerical
simulation proves the effectiveness of the controller, and numerical comparison shows that

the proposed control method is less conservative.
© 2021 Elsevier B.V. All rights reserved.

1. Introduction

With the advanced development of the digital sensor in the last few decades, sampled-data control has attracted special
attention of numerous researchers due to its advantages, such as high accuracy and reliability, effective interference sup-
pression, and good versatility. The design of sampled-data control scheme plays the crucial role in the applications of digital
implementation issues as well as theoretical development. Consequently, a great deal of studies have been focused on the
sampled-data control problem for various kinds of finite dimensional systems such as the works [1-4].

Notice the fact that a large body of real systems including heat transfer process and reaction-diffusion process can-
not be described by lumped parameter systems with finite dimensions, an increasing interest is given to the sampled-
data control of distributed parameter systems (DPSs) with infinite dimensions. The study of sampled-data control problems
of DPSs is becoming active and has become a hot spot in the control field. Recently, Tarn et al. proposed a stabilization
scheme in [5] by using periodic output feedback control instead of continuously monitoring. Based on a generalized sam-
pled method with a weighting function, Logemann et al. in [6] derived the exponential stability of the infinite-dimensional

* Corresponding author.
E-mail addresses: jihuihui2020@nau.edu.cn (H. Ji), btcui@jiangnan.edu.cn (B. Cui), xzliu@uwaterloo.ca (X. Liu).

https:{/doi.org/10.1016j.cnsns.2021.105773
1007-5704/© 2021 Elsevier B.V. All rights reserved.
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system. In [7], Logemann et al. constructed a sampled-data feedback controller to stabilize the infinite-dimensional sys-
tem and a series of exponentially stable conditions were presented by using semigroup theory. By employing piecewise
polynomial controls, Rebarber and Townley in [8] obtained some necessary and sufficient conditions for stabilization of
continuous-time DPSs. Moreover, Logemann in [9] presented the necessary and sufficient condition for the existence of the
stabilizing linear sampled-data controller. Recently, Cheng et al. in [10] proposed a sampled-data strategy for a boundary
control problem of a class of DPSs. These sampled controllers seem to be easy to implement in that the controlled ob-
jects are all linear time-invariant systems. For nonlinear infinite-dimensional systems, Wang and Wu in [11] studied the
sampled-data fuzzy control problem. Moreover, for a class of nonlinear DPSs with sampled-data measurements, Ghantasala
and El-Farra in [12] considered the active fault-tolerant control issue, where the model reduction method (e.g., Galerkin’s
technique) was suggested to obtain a finite-dimensional system which can represent the main characteristics of the stud-
ied DPSs, and the finite-dimensional controller was designed based on the finite-dimensional system. However, it seems
to be a huge challenge to achieve an exact performance of the original DPSs because of the truncation before controller
design.

To avoid this drawback, the design proposals of infinite-dimensional controllers were proposed recently to obtain better
control performance, see the works [13-17] and the references therein. Selivanov and Fridman in [13] used the time-delay
approach to study the sampled-data relay control problem for semilinear parabolic system. Kang and Fridman in [14] em-
ployed the time-delay approach and Lyapunov-Krasovskii method to deal with the sampled-data control problem and to
derive the regional exponential stability conditions. Most recently, Wang et al. in [15,16] considered to combine Lyapunov-
Krasovskii method and Takagi-Sugeno fuzzy model approach to derive the sampled-data exponential stability conditions.
However, the results in [13] were of regional or semi-global stabilization, and the approach in [14,15] was inapplicable
to the DPSs with spatially-dependent diffusion coefficients. To solve the global stability problems for DPSs with spatially-
dependent diffusion coefficients and uncertain nonlinear terms, Fridman and Blighovsky in [17] presented a robust sampled-
data controller and derived the decay rate of the exponential convergence. However, the problem of allocating resources in a
distributed fashion is ignored in the research [17], where the sensors collect information just from a single resource, which
may poses the blind sampling area or sampling error. Then, to make full use of sensor network resources effectively is an
advantageous approach to obtain the precise sampled data of the systems.

Motivated by the above discussion, in this paper, we study the network-based sampled-data control of a class of DPSs
with spatially-dependent diffusion term. In view of limited fixed sampling spatial points, the distributed sensor network is
proposed to obtain the sampled-data measurements of the state which is consisting of groups of sensors is considered in the
sampling processing, and the sensors provide a series of state measurements to their own sensor group by the interaction
among sensor nodes based on the prescribed sensing topology, which can efficaciously circumvent blind sampling area or
sampling error. Then, a networked sampled-data static output feedback controller is proposed to stable DPSs with the time
delays induced by the communication network. The global exponential stability criteria in terms of LMIs are obtained for
DPSs with three different boundary conditions, respectively. Further, the upper bounds on the sampling intervals and the
upper bounds on the resulting decay rate are obtained in this paper. Finally, a numerical example under three different
boundary conditions is given to illustrate the effectiveness of the obtained results.

The main contribution and advantage of this paper can be summarized as follows:

(1) A distributed sensor networked is employed to obtain more precise sampled data of the systems, which can effica-
ciously circumvent blind sampling area or sampling error caused by a single sensor, where M sensors are considered
to provide the measurement for spatial sampled point in each sub-domains by collaborative interaction information
among sensors according to a prescribed sensing topology, which yields improved environment perception and system
efficiency while providing desired information;

(2) Different from the finite-dimensional sampled data controllers in [12], the static output feedback controller proposed

in this paper is an infinite-dimensional sampled data controller based on the output measurement of the infinite-

dimensional distributed parameter systems without any information lost, which can accurately and effectively stable
the DPSs with spatially-dependent diffusion term. Compared with the impulsive controller in [18], which requires

a large number of spatial point sampling measurements, the networked sampled-data controller based on a finite

number of point output measurements in this paper is easy and convenient to implement;

Compared with the stability criteria in [17,19], the stability criteria in this paper make better control performance of

the system and relax the restrictions on the system by using our controller and control method, which can be shown

in numerical example.

c

Notations: In this paper, the set of all real numbers is denoted by R; The set of n-dimensional vectors is denoted by
R"; R™" stands for the set of all real m x n matrices; I represents the appropriate dimension identity matrix; I, repre-
sents the n x n identity matrix; # stands for the symmetric matrix; exp means exponent; Let # = £,([0,1]; R) be a Sobolev
space which is produced by square integrable absolute functions .#(:%,t) € R?, ¥ € [0,1] C R, ¥t = 0; #! stands for a set of
smooth functions; V.# (1}, t) stands for the partial derivative of .# (¥, t) with respect to .

2
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0=9, a8 g oo G, fn 9=l

Fig. 1. Sampling spatial points.

2. Problem formulation and preliminary
2.1. Plant: diffusion semilinear DPSs

Consider a spatially-distributed processes model, which dynamic trajectories are governed by the following DPSs
ERACHS)
—

where .7 (9,t) = [#1(9,0),.....#(9,)]" € B" is state variable; ¥ < [0,1],t = 0; the diffusion term is considered as

=AD()# (0, t) +EV2 (0. )+ An (. t) + f(ar (D, t).t) +u(d,t), (1)

; 9 y & s
AD(®).#(9,t) = [ﬁ(dﬂﬂ)vﬂ» @.0)..... 55 da(D) A (ﬁ.t))]»
is the diffusion term with dj(#)e %' such that 0=« d? <di(®) for 9 e[01],i=1.2,..., n; f(w#(0.t)) =
[f1(1 (0. 0))s .., fuCtn (D, ED]T (f: B x [0, 4+00) — B") is considered as continuous and differentiable; u(¥,t) e B
is the controlled input; A and E are regarded as known constant matrices with appropriate dimensions.
In this paper, the boundary conditions and initial condition of the system (1) is respectively

1. Dirichlet conditions

#(0,t)=.#4(,t) =0, tel0,+00). (2)
2. Neumann conditions

V.#0,t) =V.#(1,t) =0, ¢tel0,+oc). 3)
3. and mixed boundary conditions

V.#(0,t) =B.#(0,t), .#(1,t)=0, tel0,+0c), (4)

and the initial condition is
(9, 0) = 2#4(), ¥ e[0,1], (5)

where B = diag{by, by, ..., by} is a nonnegative diagonal matrix, and constants b; < 0. i=1,2,...,n.
2.2. Networked sampled-data communication scheme

To facilitate sampling for the DPSs, we divide the interval [0, I] into N subintervals by the points 0=1g < 9 <
o= Uy =1 where € =[_q. %), 0<—-0_q. ieR={1,...,N}. The middle of each subinterval is denoted by & =
% i € X, which is shown in Fig. 1.

For the sampling points 1‘_)1. 52 ..... '§N- we adopt synchronized sampling strategy with a series of sampling instants

0=t €] L Sl & vy
with limy_ .ty = .

There are N groups of sensors in the interval [0, ] to provide the sampling data. More specifically, a group of sen-
sors consisting of M sensors are distributed in each subintervals €2;,i € N. The interconnection between the group of
sensors in each subinterval €2;,i e RN can be represented by the following the directed weighted graph G= {U,V, W},
where U= {U;,U,,..., Uy} is the index of the sensor node, V< Ux U is a set of edges between pairs of sensors, the

edges Vs = (Up.Us) in G means that the sensor Uy, mev = {1,2,...,M} can receive information from the node Uj,
sev={1,2,...,M}. The weighted adjacency matrix of edges is W = {sms}f‘g._‘:]. where &mm = 0, &ms > 0 equals to Vips € V.
The degree matrix of the graph is V =diag{Vy, Vy. .... Vy}. Vm = 2?415,,,5. mev={1,2,....M}. The Laplace matrix of

the graph is 70 =1 —W. The flow diagram of sampled-data collection surrounding the sensor node m is depicted in Fig. 2,
where the sensor node m provides the measurements based on the interaction with the information among itself and its
neighboring nodes dispersedly deployed in the sensor field.

In view of Fig. 2, for each subinterval £2;,i € X, we can get M measurements for the ith output measurement y;, (x, t)
at each sampling instants t;, that is,

Vin i t) =Gt (Dity), iR, mev, k=0,1,2,....

18
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’ Actuator ——p

Controller 4—{ Network Delays

Fig. 2. System (1) with networked sampled data communication scheme,

where Cj.ie X, m e v is a constant matrix with appropriate dimension.
And the aggregated data is processed and presented as

M
Vi i 8) = Z“?msyi,,,(ﬂh t), (6)

s=1

In practical, the induced network delays may be different for each sampling data transmitted in the communication
network. In this paper, we consider a set of time-delays caused by the communication network for the system (1). Without
losses of generality, we assume that the constant delay for the kth sampling data from the sensor to the controller is denoted
by 73, and the delay T = sup{t,}.

k

In the following, we assume:

1) every sampling and signal transmission is successful and there is no data packet dropouts.
2) the sampling intervals are bounded

0 < hyin <ty — b = Mg,

whereas each sampling period may not be fixed for k€0, 1, 2. .... Then, we have
bt + Thor — (e + ) = Mg + Tor — T

where f; + 7, means the updating instant of control inputs, and t;, ; + 7, stands for the next updating instant. Then,
the maximum time span between two adjacent sampling instants can be denoted by 7y = maxy{hy 1 — T + Ty
3) there is no the Zeno behavior because of the positive lower bound hy;, on the sampling time intervals [20].

2.3. Delay-dependent sampled-data feedback control model

A networked sampled-data controller is given:

N .
X = / 1, e,
u®,t) = XI: X, 6), w0 =K[De LGz t) e R, x(¥) = {04 herise: )
=
K=K, Ky -, Ky ] € R™MP, G =[G, Gy, ..., G, IT € RMPE,

for t € [ty + To, teer + o), k=0, 1, 2, ...,i< R For convenience, denote A; = Ki[D @ I5]G € R,

In this subsection, the output feedback control for DPSs will be reformulated as a delayed system in a unified framework,
which makes it convenient to analyze the considered communication and feedback control scheme.

Throughout this paper, t; = tfc and 7, = r,i are considered for i# j. Denote t(t) =t —¢t; for t €[+ T, tp 1+ Tk 1),

e1(9.6) =.4(0,ty) — .4 (V. 1) for ¥ € ;. One obtains the following output-feedback controller form
w0, t)y = At (0, t —T(t)) — Ajer (0, t —T(t)), (8)
for Vt € [ty + Ty, tioq + Ty ) k=0, 1,2, ..., and ¥ € Qi e N,

287

Remark 1. To design the networked sampled-data controller, one mentioned classical method is used widely in the last few
decades, where the feedback controller is employed by u(#,t;) = KC.# (,t;) and the gain K should be designed such that
the matrix A + KC is Hurwitz, while it seems too conservative in that the sampling intervals should be sufficiently small

4
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for the obtained sampled-data control scheme, in other words, when the sampling intervals increases, the control scheme
can be invalid. Moreover, it is difficult to get all the sampled-data .# (¥,t,) due to its spatial properties. To compensate for
the effect of controller discretization, in this paper, we choose the discrete time-delay approach which have been applied in
[21-24] to deal with the sampled control problem.

Combining system (1) and controller (8), one has
a.# (9, t)

5 = AD@)# (D, ) + At (O, t) + EV ot (9, t) + f(# (D, 1), 1)

+ A (Dt —T(t)) — Aieg (D, £ —T (L)), 9

for t e [t + Ty, g + Tpyr) and B € Qi e N,
As shown in [25], there exist a continuable strong solution to the system (9) under the boundary conditions (2), (3) or
(4) for t = 0 and any .# (., 0) € H satisfying the corresponding boundary conditions.

3. Main resuits

Before the main results are given, we first introduce the following assumption and useful lemmas.
Assumption 1. There exists constant scalars f},, fi; such that
i f @00 - [A®, 0,0
= A, — A, )
holds for any .# (%, t), .#(%,t) € R*, where f(-,0) =0, #(?,t) # 4D, 1).
Lemma 1 [26]. let a < b, S=ST > 0, then

<fin

b
- / &T($Ra(s) < —ﬁTrdiag{S, 35, 58, (10)
A —
where
2% b
T=00] YL T T = ) - 0@, Y = wd) +e@ - 5 [ o
- a
12 b b+a
T3 = w(b) — w(@) — m[a G- 3 DwE)ds.
Lemma 2 [27]. If f1, f>...., fv : R™ — R have positive value in an open set D ¢ R™, then the reciprocating convex combination

of f; on D satisfies

N N
min(} 0] - D0+ maxg 0 s,
1= 1= ly‘éJ

where o; > 0, ZIN:] o =1,

(g R™ — R, g5() =& ;(t), [fi(t) gfi}"((tt)):| > 0}.

g;:(t)
Lemma 3 [28]. If 0 < & < 26 and let V : [tg — Ty, o0) — [0, co) be an absolutely continuous function that satisfies
Vi) <28V () +8; sup V(t+8), 1)
—1y=6=0

fort =ty then
V() <exp0) sup V(tg+6), Vt=to, (12)

—Ty=0<0

where o > 0 is a unique positive solution of
8
a=8— T]expzm'”. (13)

Lemma 4 [29]. Define a scalar function x € H. If x(0) = 0 or x(I) = 0, for a positive definite matrix Q € R",

dx(s)T _ dx(s) w2 gl
—/0 o QTdsg —mfo x(s)TQx(s)ds.

Furthermore, if x(0) =0 and x(I) =0,

Ldx(s)T _dx(s) g2
- [ et s < - T [ xeroxeas.

20
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Lemma 5 [30]. If ¢ : R — R is a convex function, then for finite intervals [a, b], integrable function f : [a, b] — R satisfies
il b 1 b
G [ T < 5= [ euwa. (1)

3.1 Design of sampling scheme with communication delay

Theorem 1. Let y = max; (% —%;_1) and Do =diag{d?, d, ..., dl}. Given positive scalars 0 < 25 < &, Ty > O, if there
exist symmetric positive definite matrices Py, Qg, Q1, Qy, and X, symmetric matrix Py, and matrix G such that
_[e ¢
g-[2 §]-o 15)
1 28T
D = [¢yj] — —exp *™E < 0, (16)
™

hold, in which Q = diag{Qq,3Qq,50Q;},
E = B[QE; + BIGE, + BIGCT & +
I -I 0 0 0 0
[ 1 -2 0 0 0
I -I 0 -12I 0 0
0

=
g1 =

oo oo
coo oo

0o I 0 0 -I
g,=(0 I 0 0 I =21 0
o I 0 0 I 0 —12f
@1 =AT (P +P) + (P +P)A +28P + Qo

”2
~EL @+ FLR) - 255X, g = (P + P,
P15 = —B+AQ, pro =P+ P+ S By + Fo),
P10 = —(PL + P)Ai, ¢ =—81P1, ¢ = — A,
ss = —exp P MQy, pag = —2Q2 +TmQ1, s = Qs
Ps10 = —Qo Ay, @511 =QE, ¢oo=—pugl,

Sim?
$10,10 = — ;;rz DoQz + Q2Do),

G = —-Do@ +P) — P +P)Do + 8D ()02 +8Q:D(F) + X,

then, we have the following results:

a) an unique strong solution to the Dirichlet boundary value problem (2), (8), (9) initialized with .#(-,0) € H and ¥q =1 satis-

fies
/;2//T(ﬂ,t)P1//(19,t)di9+/Q(V//(ﬂ, O [DE)HQy + QD NV (9, £))dr

< o2 [ (L4700, ) + Q) O, 10) + (V0 0, 10)) BDG0a (V- 0, )

+ (Vo (9, 60)) [D()Q + LD @) (Vo (B, 10)))d, 17
with x =0and ¢;;=0,i,je{1,2,..., 11} for t > tg, where « is an unique positive solution of (13).

b) if conditions of a) are satisfied with ¢1 11 = (Py +P)E, ¢y 12 = %X, D12 = 717;12)(, and else ¢;;=0,i je{1,2,...,12},
then an unique strong solution to the Neumann boundary value problem (3), (8), (9) initialized with .#(-,0) € H and xq = %
satisfies (17) with x =1 for t >ty where « is an unique positive solution of (13).

c) if conditions of a) with ¢;;=0,i, je{1,2,..., 11}, and —E(P1 +Py) — (P1 + P2)E +8DoQx + 8Q2D0 < 0 hold, then an unique
strong solution to the mixed boundary value problem (4), (8), (9) initialized with .# (-,0) e H and xq = '3! satisfies (17) with
x =1 for t >ty where « is an unique positive solution of (13).

Proof. We choose the following LKF:

5
V) = Y VO,

i=1
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Vi(t) = f AT, O (9, 6)dD,
Q

t
W(t) — / / exp? 60 4T (9, $)Q0.4 (9, s)dsd D,
Q Ji-uy

t £ T
Vs(6) = f f / expps0) (B DN (04BN 4 h040,
QJtn, Jo as ds

Va(t) = /Q(Vufl(ﬁ,f))T[D(ﬂ)Qz +QDH(V @, 1))dD

Vs(t) = x (#(0,0))7[BDoQ; +QaDoBI(# (0, 1)), (18)

with P > 0, Q; > 0, Q, > 0; x =0 for boundary conditions (2) or (3) and ¥ =1 for conditions (4). It should be mentioned
that in sub-Lyapunov function Vs(t), the term is chosen as D(¥)Q, + Q,D(¥) with D()Q, = Q;D(¥).
The partial derivative of (18) along the solution of system (9) with respect to t can be achieved as follows:

i
av]gt?,r) :/23,/; @D p g8
Q

_23" [ 18D@)4 @, 01 Pt (9,0 + V. @, OE Pt 8,0) + 47 0, 0OAT Pt @, 1)

+ [T (@D, 0), OPLat (D, 0) + T (@, t — T (O)AD Pt (8,1) — e1 (9, £ — 7 (0) (APt (8, £)dD.
(19)
In view of Assumption 1, denote
— diag(fh, ..., fi), B = diag(fly, ... f)-

For any positive scalar s > 0, one has

@,1) PACH)
[sz 0, r)} Q[W/(ﬂ 0, t)] @0)
where @ — | 5 (ExEu +ElEn) 7%(F,§+F,\E)}

It is clear that

8\/;({) +28Vs(8) = / AT, (B, )dD

- f exp 25T (Bt — Ty) Qo (P, € — i) @1
Q
By using Lemma 1 and Lemma 2, one has

t T
7/ / exp?e) 3//18(519}5) 8//1{519 S)dﬂ
t—Tm

T
< ex ,2&”// o (19 s)Q FACH S)dﬁ
t—Thy ds

< f%exsz/ [ ’(”ﬁ)s @,t— T, Q@ t— (1), 1)

T (0= T = T ) QD= Tun =7 0) |40
T B

< e /ﬁ[gf(w4({),095@9,“:({),0

+ET W, t — g, t — T () QE D, t — Ty, t — T(E))

26T (D, 0 — T,  —T(O)GE@, 1 — T (), 0)]dD, (22)

with |:Q Gi| >0, where
*  Q

£@,0b) = [@,ab) E@ab) &©.ab],
1= H(,b) — (D, 0),
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2 b
& — (@D, b) +.4 D, a) m/ (D, 5)ds,

b
b=t g [ - e s

Based on the above analysis (22), one has

) 4T (D, 1) . O (D,1) f Cose, [0 0T (D,S) . 0 (D,5)
= . +23V3(t)$fg‘rm—8t Q=——d? - | exp M/[ 7o U d?

AT (9, 1) A (D, t)
S/Q‘nw( 3t )Q]( 5% )dﬂ
j
T /Q[Er(ﬂ,t—r(t),t)Qé(ﬂ,f—r(t),t)
+ET@, t— Ty, t —T(E)QE W, t — Ty, t —T(E))
26T @t — 7w, £ — T(O)GE @, —7(6), 1)]dD. 23)

Taking the partial derivative of V4(t) and Vs(t),

W) | Ws®©) _
at ot
In view of system (9), for a symmetric matrix P, and Q,, one has

=

,2/ AT, 0 AD@).4 S, ). (24)
Q at

N T
>/ (//ms, OB + %@) (AD@).A D, 0) + EVA D, 0) + [C9,0,0 + Ak B, - 7(0)
i1 7S

+AA (D, t) — Aje (Dt —T (L)) — %)dﬁ =0; (25)
By using integration by parts, under boundary conditions (2) or (3), the following relationships can be derived that
fQ///(ﬂ,r)(ﬂ +BYAD (). (B, )d = -fﬂ[v///(ﬂ, OF 1 + POD@)V.4 (9, )d
< 7/9[V%(19,t)]r(P1 + BV (B, ). (26)
Moreover, under boundary conditions (4), the following relationship can be derived that
/Q AT OP + PYAD @) (B, )d Y < a7 (0, 0) (P + P)B0)D.# (0, )
- fQ[V///(ﬂ, OF @y + YDV (3, )d 7

According to the Wirtinger’s inequality in Lemma 4, there exists a symmetric matrix Y such that

z* " Yeq (9 ) = B0 g Yeq (9 &9
m/ﬁmel( =T (t)Ye (D, t—(t)) :W/ﬂl e (D, t—t(t)Ye (D, t —7(f))
+_L_f’i eI (D, t — 7 (6))Yey (O, —7(6))dD
@ = V11)% Sy E e
e
5/ V@t =T EWVAD, t - 7())dD. ©8)
191—1

In addition, it is easy to obtain that

N
5 sup V(t+9)§—81V(t—r(t))5—312/ AT, — (O (D, — T(0)dD
=1 84

fel-ny, 0]

N
—&1 Z VL//{T(ﬂ, t —7({))[DoQy + QDo) (Vo (¥, — 7 (£)))d?.
=1

(29)
It is not difficult to obtain that
N
Z,/Q A, O P+ PEVAT (@, 0)d9 = (4, t) Py +P)EAT () — 0, 0)(P, + P)E#T(0,0). (30)
i1 Ut

8
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From Lemma 4, for a positive definite matrix X,

o ﬂz f Vo @, OXV . (9,049 < — f(///(:? £) — U VX (9,0) — 2l )0, a1

where xq = 2[ is for boundary condition (3) or (4), and xq = 1 is for boundary condition (2).
According to (20)-(31), it is derived that

v
.

+28V({t) -8, sup V(r+0)58‘g§t)
6

<l-7u,

F28V ) — 8Vt -7 ()

N
< Z] /Q BT, 008,009, (32)

where (19,1) = fq is for boundary condition (2) or (4), 8(9,1) = B, is for boundary condition (3), B2(9,t) = [£] £] ﬁ;]r,
Bo(®,t) =[BT 67 B}]', and
T
Bi=[A®,0 AT@D -1 Hyfiew A B0 gy o © - EFDAT @, 8)ds]

:
S SO AT @55 b (G - e T 9 s)ds

T ™

=[O -m)

By =[2£00  [Tyw 0,0 @ t-re)].
Bi=[B] VA0 AT40].
In view of the condition (16) & < 0, one has
av(t)
at

<-28V(t)+81 sup V(t +6). (33)

fel-7y, 0

According to Lemma 1, Theorem 1 holds.
This proof is now completed. O

Remark 2. It should be noted that the Wirtinger’s inequality was used in (53) given by [17] as follows

200 8p5) [ (V0,009 < 2@ [ (5,000, G4

where b = 1 when the boundary condition is Dirichlet condition; and b = 4 when the boundary condition is mixed condition.
Different from Fridman and Blighovsky [17], (28) in this paper applies the Wirtinger’s inequality at each sampling interval.
By using our method in this paper, the left side of (34) can be obtained

2a9(p; — dp3)m?

N
~200(p2 -0 Y. [ (Vo 9,079 < -2
i=1 d

N
> [ @0~ #0000, (35)
i=1 d

where y = %; —1;_; is the maximum length of sampling interval in [17]. Compared with [17], our method is less conserva-
tive.

3.2. Design of sampling scheme with delay 7, = 0
Obviously, 7y can be obtained by using Theorem 1 with communication delay. If the communication delay is not consid-

ered (i.e, 7, = 0), the updating interval is t € [, f;,1) and the method given in Theorem 1 is then conservative. To design
the sampling scheme without considering communication delay, the Lyapunov functional (18) can be modified as follows:

Va(t) =V ) +Va (),

Vilt) = f /: exp® 04T ()06, (9, 5)dsd?
_7’_e><grmmffr (@D, 5) — O, —TE)) Qut @,5) — 4, —T(t)))dsd. (36)
47y QJt-t(t)

Remark 3. V;(t) is represented as a sum of the continuous time term /g, ftif(t) expzs("‘)M;—s(Eng 3”"’3*5 dsd?¥ > 0 with
the discontinuous one (the second term of V4(t)). By a simply computing, one has

T
Vy(t) = exp 28 (/ f: o oA @) (:9 5)03_8%5159,5)
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_4%2;[,//(19, §) — A (D, t — T AT Qal ot (9, 8) — (B, — r(t))])dsdﬁ.
Since [#(8,5) — . (8,1 = T(t))]ls_s—c(ry = O, then by using the Wirtinger’s inequality in Lemma 4, V;(t) = 0.
Based on Lemma 5, one has
f/t;(t)[//(ﬂ, §) =t @, 0 — TN Qal# (@, 5) — . (3, — T (£))]ds
& f%[‘/f/(ﬁ, £) =A@, —TE QA (D, 8) — # @, t—T(O))]. (37

Taking the partial derivation of V4(t), one has

EIAG) 04T (@D, 0) ,, 3D, 1)
- +2avd(r)5[9 20, S D

- ”—Zexp*”w/ [# (D, 1) — # @O, t —TED] Q[ (8, 8) — # (D, t — T (t))]dD
Aty Q

8m?

= S e ML (9,0) — A (D, £~ TN QA D, 0) — A D, £ T D)), (38)
M

Theorem 2. let y = max; (% — ¥_1) and Do = diag{d?, d?, ..., d3}. Given positive scalars O < 81 < 8, Ty > 0, if there exist

symmetric positive definite matrices Py, Qp, Qq, Qy, Q3, X, symmetric matrix P,, and matrix G such that

_le G
G1= |:* Qil >0, (39)
& = [¢y] - Lexp’z’“ME <0, (40)
™

where Q = diag{Qy,3Qy,5Q},

E = E]QE; + E[GE, + EIGTEy + E]QE,,
[ - 0 0 0 0 0 0 0 0 O
Bi=|I I 21 0 0 0 0 0 0 0 0Of
[ -I 0 -12I 0 0 0 0 0 0 O
0 I 00 - 0 0 0 0 0 0
B,=|0 [ 0 0 I —2I 0 0 0 0 0}
0 [ 00 -I 0 122 0 0 0 0
2
S11 = AT(PL+Po) + (P +P)A +28P; +Qp — X“lf X
14 2y72
2L BB+ ELF) - (%)QXPQMMQ&
2 Sk

(L4 2)m?
272
b1 = P+ AT, do =P+ B+ Sl (4 F),
P10 =—(PL + P)A;, s =—-AiQ,

1 +2Z)m?
¢22 = ‘61131 == (T

G2 = P+ P)A; + ( Yexp Qs

Yexp 2™ Qs,

ss = —exp Qg g = —20; + Q1 + 03,
P89 = Q2, P510=—QA;, ds11 =QE, Pog=—pgl,
2
P00 =~ D02 + Q2D
dun = —Do@P +B) — (P +P)Dp +8D()Q; +3Q:D () + X,

then, we have the following results:
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a) an unique strong solution to the Dirichlet boundary value problem (2), (8) and (9) initialized with .#(-,0) ¢ H and xa =1
satisfies

/ﬂ AT (S, P (D, £)dD +]Q Vot @, 0)NT[DENQ + LDV (9, £))dd

< exp 20V (fg), (41
with x =0 and ¢;;=0,i,je{1,2,...,11} for t > to where & is an unique positive solution of (13).

b) if conditions of a) are satisfied with ¢y 11 = (Py +P,)E, 112 = %;X, D12 = 7%2}(, and else ¢;;=0,i, je{1,2,...,12},
then an unique strong solution to the Neumann boundary value problem (3), (8), (9) initialized with .#(-,0) € H and X, = %
satisfies (41) with x =1 for t > ty where « is an unique positive solution of (13).

c) if conditions of a) with ¢;; =0,i, je {1,2,...,11}, and —E(P; +P,) — (P + P,)E + 8DoQ, +3Q,Dg < 0 hold, then an unique
strong solution to the mixed boundary value problem (4), (8), (9) initialized with .#(-,0) € H and xa = 21! satisfies (41) with
x =1 fort >ty where « is an unique positive solution of (13).

Proof. Similar to proof of Theorem 1, one has

V()

g— +28Va(t) =8 sup Vo(t+8) (42)

t Be[-y, 0]

B0 500 - s1vat -2 () 43)
N

szf BT, 0P, 0)d, (44)
i1 S

where B(,t) is given in proof of Theorem 1.
This proof is now completed. O

Remark 4. In the proof of Theorem 2, since  sup Va(t+6) > sup V(t+86), one hasif
Be[-y, O] Be[-1y, 0]

Vo(t) + 28V, (6) = 8; sup V({t+6)<0, (45)
—1y=6=0
then the condition (11) holds, which means that
Vo(t) < exp2@t) sup V,(to+86), Vt=to.
8=0

— =

4. Numerical example

In order to illustrate effectiveness of our results, the following example is given.
Consider the distributed parameter system as follows
RACHS) N
—y = AD() ot (O, ) + EN# (D, 8) + At (O, 6) + f(# (D, 1), t) + Z X (w9, 1), (46)
i=1
where the domain of the space is [0,7], which is divided into 10 sub-domains on average. For each sub-domain,
there are 4 sensors to provide the measurement of the sampled point. The parameters of the systems (46) are given
as: w(,1) = Ap (B, 1y), D) =05, E=01, A=-03, A=K(DohG=-01,I=1, G=[1 2 1 o,s]T, D=
1 -01 -08 -01
-1 2 -05 =05
-05 -05 1 0 |
0 -1 -05 15
Three boundary conditions for the distributed parameter system (46) are list as follows:

1. Dirichlet conditions

MO, 0) =4, t)=0, tel0,+c0); 47)
2. Neumann conditions

V#@0,t) =V (m,t)=0, tel0,+c0); (48)
3. and mixed boundary conditions

VA#QO,t) =#0,t), @, t)=0. (49)

1
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Response of the state

Space
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Time (sec.)

Fig. 3. Open loop profile of evolution of the system (46} with Dirichlet boundary conditions (47) and initial value _# (¥, 0) = sin(%9 .

Response of the state

Space

Time (sec.)

Fig. 4. Closed-loop profile of evolution of the system (46) with Dirichlet boundary conditions (47} and initial value .« {i%,0) = sin{i¥ ).

Table 1

Maximum ty is derived with § =1,

Method

Dirichlet (17)

Neumann (48)

Mixed condition (19)

[19]
[17]
Theorem 1
Theorem 2

0.3485
0.3955
04001
0.7946

0.2451

0.3443
0.7210

0.1960
0.2322
0.2481
0.5850

Table 2

Maximum § is derived with tj; = 0.196 and &, = 26 — 106,

Method

Dirichlet (17)

Neumann (48)

Mixed condition (19)

[19]
(17]
Theorem 1
I'heorem 2

1.7115
1.8018
1.8150
6.2325

1.2890

1.6676
5.7927

1.0001
1.2366
1.2911
3.6668

Comparison: Consider f(.#(¥.t).t) =0.1tanh(.#(¥,t)). It is easy to obtain that —F, = F; = 0.1 due to —.# (2}, t) =
2 2 2] and § = 1. The corresponding values of 84 are chosen to be close to
28 (without loss of generality, we take §; = 28 — 105), which leads to a small decay rate ¢ while large sampling intervals

tanh(.# (1%, t)) <.# (19, t). Choose K; = [2

hy.

Based on Theorem 1, the maximum of parameters 7y are derived under the different value of the parameter 8. In view
of Table 1, it is clear that 7y is the biggest under Dirichlet condition (47), and 7y is the least under mixed condition (49).
Obviously, the results under mixed conditions (49) are comparatively conservative. As a comparison with [17,19] in Table 1,
for the same §, the maximum allowable delay 7), obtained by using our method is the largest, which implies that our

12
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Response of the state

20

]
Space 0 Time (sec.)

Fig. 5. Open loop profile of evolution of the system (46) with Neumann boundary conditions (48) and initial value _# (%, 0) = e} 1,

e o
® ® =

Response of the state
o o
[ IS

Space 00 Time (sec.)

Fig. 6. Closed-loop profile of evolution of the system (46) with Neumann boundary conditions (48) and initial value .z (%,0) — e“s"-1,

o o o
> » o =

Response of the state
o
[N)

Space L Time (sec.)

o

Fig. 7. Open-loop profile of evolution of the system (46} with mixed boundary conditions (49) and initial value . (9. 0) = £~

results are less conservative and our method is superior. Maximum § is derived in Table 2 by using Theorem 1, Theorem 2,
[17,19], respectively. According to the Eq. (13), the bigger the parameter 8, the bigger decay rate «. In view of Table 2, the
maximum parameter § obtained by using our Theorems are the largest than ones in [17,19], which means that the results
based on our method are to stabilize the system more quickly. It is also clear that our method is superior.

Simulation: Based on Theorem 1, choose f(.# (9,t),t) = 0.8tanh(.#(9,1)), Ki=[4 4 4 4] and é = 1. The numeri-
cal simulations of the DPSs (46) under different boundary conditions are discussed in the following. The profiles of evolution

13
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Response of the state

Space o7 Time (sec.)

Fig. 8. Closed loop profile of evolution of the system (46) with mixed boundary conditions (49} and initial value _# (1,0} =

of open-loop system (46) are presented in Fig. 3, 5, 7 under different boundary and initial conditions, respectively. It is easy
to see that the state of the system cannot converge quickly. The profiles of evolution of closed-loop system (46G) are shown
in Fig, 4, 6, 8 under different boundary and initial conditions, respectively. Simulations of solutions under the networked
sampled-data controller (7) with ¢; { — ¥ =0.17 (i=0, 1, 2, ..., 10) show that the state of the system can converge
quickly, which means that cffectiveness of the obtained exponentially stability conditions is illustrated.

5. Conclusion

In this paper, the distributed networked control problem is investigated for a class of DPSs governed by semilinear diffu-
sion PDEs. The distributed sensor network is considered to provide the precise measurements, and a distributed networked
sampled-data controller is designed to ensure the stabilization of the distributed parameter systems. Moreover, the time
delays induced by the communication of the network is considered. To facilitate analysis of the closed-loop system with
sampled-data, the time-delay dependent approach is used to reconstruct the closed-loop system. By using the Lyapunov
method and some inequalities, the global exponential stability conditions are derived in terms of LMIs. Due to the intro-
duce of the sensor network, in future studies, we will consider the event-based sampled-data control scheme to facilitate
bandwidth reduction and to reduce network traffic burden, And the sensor networks with multiple communication channels
studied in [2] is interesting, which will be one of the future research topics.
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Abstract

This paper studies the adaptive event-based Hoo control problem for a class of T-S fuzzy distributed parameter system with
parameter uncertain and actuator faults. To overcome the drawback of the period control scheme, an event-triggered control scheme
with adaptive threshold is proposed to minimize the number of unnecessary sampled data transmission and to reduce the update
frequency of the controller. Furthermore, a T-S fuzzy controller based on the adaptive event-triggered sampled data is designed
to ensure the stochastic exponential stability of the distributed parameter system with He. disturbance attenuation performance.
Based on a new Lyapunov functional and inequality technique, the stochastic exponential stability criterion of the closed-loop
system is obtained, and the controller parameters are designed. The new developed inequality can reduce the conservatism of the
stability criterion. Finally, the effectiveness of the theoretical calculation results is verified by numerical simulation, and the results
are compared with the relevant literature in the simulation, showing that the methods and results in this paper are less conservative.
© 2021 Elsevier B.V. All rights reserved.

Keywords: Distributed parameter systems; Adaptive event-triggered control, Hy; control; T-S fuzzy model; Actuator fault; Stochastic exponential
stability

1. Introduction

In engineering systems, nonlinearity is inevitable, that is, the relationship between the state, input and output
of the system is not all linear, and the mutual coupling between the elements makes the stability analysis, control
performance realization and optimization of the system more complex and difficult. Based on the fuzzy set, in 1985,
Takagi and Sugeno [1] proposed a Takagi-Sugeno (T-S) fuzzy model to deal with nonlinear processes. The T-S fuzzy
model connects the theory of fuzzy logic with the strict mathematical theory of nonlinear systems or linear systems,
and provides an effective thinking framework for the local linearization analysis of nonlinear systems, thus realizing

* Corresponding author at: School of Statistics and Mathematics, Nanjing Audit University, 86 West Yushan Road, Nanjing 211815, China.
E-mail addresses. jihuihui2009@163.com (H. Ji), btcui@jiangnan.edu.cn (B. Cui).
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0165-0114/© 2021 Elsevier B.V. All rights reserved.
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the extension and application of the control theory of linear systems to the control of nonlinear systems [2]. In recent
decades, the rapid development of fuzzy control theory has been witnessed with abundant research results [3], [4],
[5]. The fuzzy control theory of lumped parameter systems is quite mature, however, the fuzzy control theory of
distributed parameter systems is still in the initial stage due to its complex spatial characteristics. How to extend the
techniques and methods of lumped parameter systems to the analysis and control of distributed parameter systems has
attracted the attention of increasing researchers. Subsequently, T-S fuzzy model was assumed to accurately describe a
class of nonlinear distributed parameter systems in [6], [7], where a fuzzy boundary controller and a pointwise fuzzy
controller based on continuous time were designed respectively in [6] and [7]. Considering the actual situation may
be that the measuring tool is not accurate enough, the working mechanism of the controlled object is not clear, or the
system is affected by the exogenous input representing the disturbances, measurement noises, etc. The uncertainty or
exogenous input of the system will become cumulatively serious with the increasing complexity of the object. Thus,
it is of theoretical significance and practical value to study the disturbance suppression control of fuzzy model of
distributed parameter system with uncertain terms. As is well known, H, control method provides an effective way
to solve the robust control of, which can guarantee the stability of the system, meanwhile restrain the influence of
disturbance on the system performance below a certain level, so as to realize the robustness of the controlled object
about external disturbance. For distributed parameter systems, Hy, control problems have been studied since the late
1980s [8], [9], [10], [11]. This paper mainly focus on the H, control problems for a class of T-S fuzzy distributed
parameter system with uncertainty and exogenous disturbance.

To improve the control performance of the system, the advanced digital technology has been widely used in var-
ious practical systems with its characteristics of flexibility, efficiency and easy maintenance. This has stimulated the
study of sampled data controller, which can control the continuous object system through a discrete time controller (a
controller based on sampled data). Compared with the continuous time controller, the controller based on the sampled
data can reduce the implementation cost and time through the microcontroller or digital computer, and this kind of
controller has the advantages of high precision, reliability, effective interference suppression and strong universality.
Therefore, the study of sampled data control methods has become one of the hot topics. A sampled-data static output
feedback controller was suggested in [12] to deal with the sampled-data distributed H.,, control problem for transport
reaction systems. Based on the results in [12], a periodic Round-Robin scheduling protocol was used in [13] to handle
network-based H filtering for a class of parabolic distributed parameter systems. In the studies [12], [13], Lyapunov
method is employed which contributes to derive the stability of the system and the corresponding disturbance atten-
uation performance. To reduce the conservatism of the above results, an improved Hy, sampled-data control method
was proposed in [14] for a class of semilinear parabolic distributed parameter systems. Considering the fact that the
sampled-data control schemes in [12], [13], [14] are difficult to implement and with a high cost because the acqui-
sition of accurate average sampling data requires a large number of spatial point sampling measurements. The finite
number of point spatial state measurements and Razumikhin-type approach were used in [15] to solve the sampled-
data distributed H, control problem for a class of semilinear distributed parameter systems. It should be pointed out
that the sampled-data control strategies mentioned in above works are based on the periodic control method, which
can result in unnecessary information transfer and resource waste in that the sampled-data is still transmitted and the
controller is still updated even when the system reaches an desired state. Therefore, how to overcome the drawback
of the periodic sampled-data control method to solve the robust control problem is a topic worth studying.

Event-triggered control scheme provides an aperiodic way to perform control tasks, that is, it is only related to
the sampled-data information at the sampling time, and it can judge whether the sampled-data signal at the sampling
time is sent to the controller according to the predefined event-triggered conditions. Only when some performance
indicators of the system exceed the expected value, the sampled data will be sent and the control signal will be up-
dated to achieve a satisfactory control performance. Event-triggered control scheme can operate without the additional
monitoring hardware, so it is economical and convenient to use. Compared with the traditional time-triggered control
methods, the event-triggered control scheme can effectively reduce the consumption of control energy and the con-
sumption of transmission bandwidth, which has aroused the interest and attention of many experts and engineers in
recent years [16], [17]. Particularly, since the serving Astrom and Arzén [18], [19] have demonstrated the advantages
of event-triggered control in reducing the consumption of bandwidth and data transfer for sampling through specific
experimental comparison. Event-triggered control, as an event-driven aperiodic control signal update strategy, has
been widely studied in lumped parameter systems, however, the event-based sampled-data control problems of dis-
tributed parameter systems are poorly studied and urgently needs to be solved. Recently, a finite-time event-triggered
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reliable fuzzy controller was adopted in [20] for a class of nonlinear distributed parameter systems with actuator
faults and with H, disturbance attention performance. Considering that the preset constant threshold value of event-
triggering control schemes may not be suitable for the complex system structure, whereas the above work [20] is
based on the time-invariant threshold value. Therefore, it is necessary to design an adaptive threshold event-triggered
controller to adapt to the change of the system.

Motivated by the aforementioned discussions, this study focuses on adaptive event-triggered He control problem
of a class of T-S fuzzy distributed parameter systems with parameter uncertainties and actuator faults. To overcome
the drawback of the period control scheme and the event-triggered control scheme with constant threshold, an adap-
tive event-triggered control scheme is proposed to minimize the number of unnecessary sampled data transmission
and to reduce the update frequency of the controller. Furthermore, a T-S fuzzy controller based on the adaptive
event-triggered sampled data is designed to ensure the stochastic exponential stability of the distributed parameter
system with He, disturbance rejection performance. Based on a new Lyapunov functional and inequality technique,
the stochastic exponential stability criterion of the closed-loop system is obtained, and the controller parameters are
designed. The new developed inequality can reduce the conservatism of the stability criterion. Finally, the effective-
ness of the theoretical calculation results is verified by numerical simulation, and the results are compared with the
relevant literature in the simulation, showing that the methods and results in this paper are less conservative.

Notation. R presents the set of all real numbers. R” denotes the set of all # dimensional column vectors. R states
the set of all n x m matrices. For s € [I1, I2], H1 (11, I) stands for the Sobolev space of absolutely continuous functions
x o [f1, 2] x R — R” with satisfying Z—’; being the Hilbert space of square integrable functions. || w(x, ) || 2=

A/ ff wT (x, H)w(x, £)dx < co. diag{-- - } presents a block-diagonal matrix. [@;j1mxn means the matrix of elements ;;,

1=1,2,---,m, j=1,2,--- ,n. Ew stands for the mathematical expectation of the variable w. min{A4} presents the
smallest element taken from the set A. max{A} presents the largest element taken from the set A. N is the set of all

: P Pl [P PI
integers. |: « BT |p P
2. Preliminaries

Consider a class of T-S fuzzy distributed parameter systems with parameter uncertainty
Rule i- IF 61 (x, 1) 18 x1, 62(x, 1) 18 x5, - -+, Oy (x, 1) is x,, THEN

dw(x,t ]
% = = (D) Ve, 0) + (A5 (0) + A (e Dwe, 1) 4 Bi(eucr, )
+Citvx, 0, ie{l,2,--,5), 1
where 6y (x,t), -+, 6 (x,t) stands for the premise variables; xi, xé, RN xé (x, 1) presents the fuzzy sets, i
states the 7, fuzzy rules, i € {1,2,.--,r} and r is the number of the fuzzy rules. w(x,#) € R" is the state vari-
able, x € Q2 = [L f] stands for position variable, = 0 is the time variable, the diffusion coefficient D(x) =
diag{d; (x), d2(x), - ,dn(x)} and d; (x),1 = 1,2, - -+ , n are continuous real functions with first derivatives, 0 < d° <
di(x),i=1,2,---,n. v(x, ) € R™ is the external disturbance satisfying fé’o v(x, T v (x, 1)dr < 0o. u(x, 1) € R™

is the control input. 4; (x), B; (x) and C;(x) are given matrices associated with x and with appropriate dimensions.
The #;, local model of system (1) is defined as (A;(s), B;(s)), and A,; (x,¢) is the uncertainty parameter and
satisfies

Aui(x, D) =M (D) F;i(x, ON; (x),  i€{l,2,--- .1} @

where M;(x), N; (x) is the known real variable for the position x, F; (x, t) is the unknown time-varying function and
satisfies

FoonTF@n<I, ie{l,2,-,rh 3
LetO(x,1) = [61(x,0) - 6(x,1)] and define
[Tj=q #0505 (x,0) I
s i@, 8) =1,
S M@y 24O

wi@x, 1) =
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where w;;(6; (x,t)) is the membership of the variable 6; (x, f) in the fuzzy set X; For convenience, denote u; =
wi (0(x, 1)).
The global fuzzy model based on the weight mean value is given as follows:

WD L eVt + iw(eu D) (A; () + Aui (xr, D)w (1)
at = ax > P i > i u: > >
+ Y mi @@ OB ux,0) + Y i O, 0)C; (v, ). @
i=1 i=1

For distributed parameter system (4), the boundary condition is given as

Vuw(x, ) = Ew(x, 1), ®
w®@, ) =0, >0, ©)

and initial condition is given as
w(x, 0) =wo(x), x € [x,X], @

where wo(x) € H!(x,X), E is a given real number.
2.1. A fuzzy controller based on adaptive event-triggered sampled data

Firstly, the spatial region of the system [x,x] is divided evenly into subintervals of £, and each subinterval is
represented as [x;_1, x;), X; is the midpoint of the subinterval [x;—1, x;); fxh is aperiodic sampling instants, where
0=<1 <t <--- <t is aseries of non-negative integers and limy_, o, fh = 0.

In this paper, there exists a communication network between the sampler and the controller, and the time delay 7
will be induced when the first #; data passes through the network. Then, the update interval control input is [fzh +
Ties et 1+ Tt 1)-

‘Without changing the communication network, a component-based event triggering scheme can be introduced to
improve the communication performance of the network. To this end, the sampled-data based on the self-triggered
scheme [30], discrete event-triggered scheme (DETS) [31] and dynamic DETS [32,33] were proposed, respectively. It
is worth mentioning that there is no Zeno behavior [34] with the DETS [31]. However, authors in [35] has pointed out
that there are still a lot of packets over the network when the system is stable. To further improve the communication
performance, the DETS with an adaptive threshold is proposed in [22]. Adjusting the triggering threshold online, the
DETS is more effective than the DETS with a constant threshold.

Based on the above analysis, the DETS with an adaptive threshold is introduced as follows:

14 Z
D e ) Que G t) < i) Y wi )T Sw Gy, 1eh), ®)
=1 =1
1- %antan (—H-Ef:1 i) wltil)

pit) = min{oo, poe SR B ), ©

where £ is the sampling period of the periodic sampler, e; (X7, 1) = w(X, £x) — w(Xy, tgh), Ly = tph + ih, i =
1,2, ,ng, and ng stands for the sampling number during the update period [fxh + T, tx+1/ + Te41) of control
input, pg € [0, 1) and symmetric positive definite matrices €2;, ¢ =1, 2, - - , £) will be given later.
txh is the last event-triggered instant, then the next event-triggered instant is
2 2
ey = teh + max{ih| Yy e G, ) e, 1) < p ki) Y wGin, reh)T uw G, ch)). (10)
=1 =1

Remark 1. It should be mentioned that the parameter pg < [0, 1) plays an crucial role in the adaptive DETS. Different
values of the parameter po yield to significantly different control performance, for special case, po = 0, then one
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has that the next transmission instant #4142 = f; + A, that is, the event-triggered scheme is regressed to the time-
triggered scheme. For the latest transmitted sampled-data w (%;, #z4), whether or not the new sampled-data w (X;, £;;)
is sent to the controller has much to do with the selected value of the parameter po. As the work [20], where the
parameter oo is a preset constant, then according to the event-triggered condition (8), the margin of the error ¢;(x;, ) =
w (X, Lgi) — w(Xy, txh) is determined. The problem is that the sampled data still needs to be updated even when the
error is within the allowable range according to event-triggered condition (8) with the preset constant parameter pg. It
makes sense to make adaptive adjustment according to the latest transmitted sampled-data w (%;, f/) of the system and
the new sampled-data w(X;, £;), thus, this paper consider the event-triggered scheme with adaptive event-triggered
threshold o (£x;) to adapt to the change of the state of the system.

To study the H, control problem of uncertain fuzzy distributed parameter system (4), a point feedback controller
based on an adaptive threshold event-triggered sampled data is considered as
Rule j: IF 01 (x, 1) is xq, 02(x, ) is X5, -+, O (x, 1) is x;, THEN

u(x, 1) = K; (Gw Gy, 1eh), an

where j € {1,2,---,r}, x € [xj_1,x), t € [txh + T, frp1h + ter1), w (%, 1ih) is a measurable output; K; (x;) is the
controller gain at position x;, which will be designed later.

It is worth noting that factors such as equipment obsolescence, aging and external disturbance may cause actuator
execution errors. Based on the work [20], [21], consider the actuator fault in a stochastic process framework as follows:

ux, t,0(t) =Fo@ulx, 1), 12
where {0 (t), t > 0} is a continuous time Markov chain with discrete mode, the number of the modes is finite, and the
set of modes is defined as M = {1, 2,3, - -- , m}, transfer rate matrix A = [77;;],nm of Markov chain is governed by

ik + o), i # Jj,

L (13)
1+ miri+or), i =],

73{0(!+)~):j\0(t)=i}={

where 7;; > 0, 7 # j is the transfer rate from the mode 7 at the time of ¢ to the mode j at the time of ¢ + A, and
m

i =— . mj;A>0isan increment in time, o(}) stands for the infinitely small variable with respect to A, that
i=1,i%#j
is, lim 22 = 0,
A—0

For o (t) =14, consider the parameters of the actuator F (i, ) satisfying 0 < F(i,) < 1.
Then, a global fuzzy controller is given:

,
u(x,t,0(t)) =F(o(t) le«j(g(x, DK EDw (3, th), 14)
=i
where f € [fth + g, e 1h 4 Tet1), X € [g—1,x), € {1,2, -, 7).

2.2. A closed-loop fuzzy system with communication delay

In order to consider the system (4) and the fuzzy controller (14) based on event-triggered condition in a uniform
time frame, similar to the work [22], denote 7y = [#xh + Tk, fk+1/4 + Tk+1), to find out the unified variable about time,
the time interval section 7 is then discussed by case:

(1) If tyh +h + tayr = tr41h + Tey1, then denote d(¢) =t — 1h, t € Te;

(2) If tgh + b+ tar < fr41h + T, there must exist scalar m € Ny suchthat (i + b + tar < fr1h + (m+ DA+ 71,
the variables w (X, fph) and w (X, tph + jh), j = 1,2, - -, m satisfy the event-triggered control scheme (8), then
denote t(¢t) =t — txh — ih, t € 7;(], j=0,1,---, m, where the time interval 7 will be divided into (I + 1)

m
subintervals T = 'UOTJ ,and
ke
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i Nah+teah+ (G+Dh+n), j=01,---,m—1, as)
B |tk 4 mb 4 v b+ ), =me
Based on the above discussion, let0 <1z <7(t) =d,andd =h + .
For the case (1), one has
e (%, 1) =0. 16)
For the case (2), one has
e(%,)=0, te 7;?, an
e, ) =w, eh+ jh) —w@, ), teT!, j=12,,m.

For simplicity, let p; = w; (€ (x, 1)), ti; = mi (@(x, £))pe;(0(x,1)). Combining (4), (11) and (12), the closed-loop
fuzzy system can be derived as follows:

3 ' 3 r r
% = = (D@Vu,0) + ;m (A1 () + A (x, )0 (x, 1) + ;ju,-c,- e, 1)
30 i BiOF (0 DK [ (rt — 7(0) — ex(xat — 7(0) — e 1), (s

i=1 j=1

where x € [x;_1,x7), f € [fgh + 1, eih + 1), 1€ (1,2, 4}, k< {0,1,2,---}.

In this paper, Lyapunov method and stochastic control method are mainly used to study the feedback H, control
problem of distributed parameter system (18) based on event-triggered sampled data. The design of the feedback con-
troller depends on the stability of the system. Therefore, this paper introduces the definition of stochastic exponential
stability.

Definition 1. For any initial condition wo(x), o (0) € M and all the permissible uncertainties, if there exists a constant
¢ > 0 such that

E{llweenlik, | wow), 0@} = e lmow)l 3, 19

where g > 0 is a given scalar, it is said that the closed loop system (18) under the boundary conditions (2), (3) and
3 (x, t) = 0 is stochastically exponentially stable (SES) with decay rate g.
Further, for a specified interference attenuation level of y > 0, if

[e'e] [e'e]
ef [weoi,an b <y 1560l ar @0)
0 0

then the closed-loop system (18) under the boundary condition (2) and zero initial condition (3) is said to satisfy the
H,, performance.

For simplicity, denote H(r) = E{foooﬂw(x,t)ﬂzﬁzdt} — yzf(;’o ||6(x,t)H2£Zdt. If condition (19) and H(t) < 0
hold, the system (18) satisfies the H. performance with a decay rate 8.

3. Stochastically exponential stability and H., performance of the closed-loop systems

The following lemmas are used in the analysis and proof of the stochastic exponential stability of the closed-loop
system.

Lemma 1. [23] If %ﬁl : [a, b] — R" is square integrable, (Q is a symmetric positive definite matrix, for any positive
value B, then
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b
dx) T _dx(® 2
T T @
where
£ x(b) - x(a)
T Lx®) +x@ - = [P a@)ds |

Lemma 2. [24] If M e R, N ¢ R"2*% gnd F < R"™"2 gre real matrices, and the matrix F satisfies FTF < I,
Jor any positive number ¢ > 0, then

MFN + (MFN)T <e TMMT + NTN.

T

Lemma 3. [25] For a given symmetric matrix S = |:Si1 glz} where S11 € R™7, S15 € R™™, S5, € R™™, then
2

the following three conditions are equivalent

(1) S<0;

() Sy <0, 50 — ST,55 81, < 0;
(3) S <0, S11 — S12855,' 8T, <.

Lemma 4. [26] Let O < Bz < 2Bo and an absolutely continuous scalar function V : [ty — d,00) — [0, c0). If the
inequality

V)< =280V @O+ Ba sup V+¢), t=i, (22)
—d=<¢=<0
holds, it is then derived that
V(i) <e 200 sup V@i+e), t>r10, 23)
—d=<g=0

where B is the unique solufion of

2df
p=po— . @4

Lemma 5. [27] Let x : [a, b] — R" be an absolutely continuous function with x € La(a, b) and x(a) = 0. Then for
any n X n matrix Q >0,

b 2 b
/XT(S)Qx(s)ds < ‘L(l’;z‘l)/xT(s)Qx(s)ds.
by

a a

Lemma 6. Let 5(t) : R — [a1, a2] is a bounded function about the variable t, where a1 and oy are real numbers;
ai; (s(t)) is a linear function of the variable s (i, j = 1,2,--- ,n); A(s(t)) = [a;;(s(t))] € R*% is a symmetric matrix

function. If
A1) =0, A(ap) =0,

hold, then, for any vector function &(t) : R x R" — R", the matrix function satisfies
EOTAGCOEN <0, s €lay, arl.

34
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Proof. Leté =[& & - &, ]T is an arbitrary constant vector, one can get
ETAG(E =) aij(s()&E; = Fs(1)). (©5)
i=1 j=1

According to the condition of A (s(¢)), f(s) is a linear function of the variable s.
According to the monotonicity of linear functions, one has

Fla) = fs) < flaa), (26)
or
Sflag) = fs) < flan). @7

If A(ey) = O and A(ay) <0, foz s € [gl, ay], then f(s) < 0.
Because of the arbitrariness of &, let § = &(r) without loss of generality. For s € [«1, a2], then

EOTAG)ED) <0, 28
This is completed the proof. O
For the stability analysis of the system, choose the following Lyapunov functional
Ve, o) =V1(t,00)) + V2D + V3(0) + Va(@) + V5(0), 1€, 29

where

Vit o) = / £ e, ) Poou(r, 0%, Eulx,1) = [ i T(tfi,ﬁ;i)ﬂ) dﬁ],

X ot

%@=/

X

PP Dy, T Qrw(x, B)dddx,

t*!ﬂ;
x t 1
dwx, 9T dw(x, P
Vg(t):/ / fezwrt) W(gﬁll) B w;’;l Y 49, dtdx,
X t—ty

Py
o

V4(t):/Vw(x,t)TD(x)Q3Vw(x,t)dx,

x
Vs(t) = w(x, T ED(®) Q3w (x, 1),
Py;, Pl
£ P
and Q3 are commutative, the matrix £D(x) and Q3 are commutative.
Define the following variables:

for o) =iz, B, = , Q1, 02 and Q3 are symmetric positive definite matrices, and the matrix D(x)

T
ﬁl(X,f):[naT(x,t) ol (r,r) it w(y)T] 3
T
nz(x,r)z[ng(x,t) T (eor) 2EDT (e T B(x,t)T] g
T
n3(x, f nZ(x,t) ng'(x,t) 31%)1 U(x,t)T] »

=
MaG,0) =[0G, 0T wen @) wer—a)’ e — @) a0,
=

T
s [l weTds L ft’*f(‘)w(x,ﬁ)Tdﬁ].

Ty—t (@) Jt—ty

np(x,

35
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Theorem 1. Consider the closed loop system (18) with boundary conditions (2) and (3). For given positive constants
o, B, B, the system (18) satisfies the Hy, performance with a decay rate B if there exist positive constants €1, €2, €3,
symmeltric positive matrices Py ;, € R"" (i, € M), P3 e R, Q1 e R™, Q7 e RY, Q3 e RV and X € RV,
symmetric matrices Q4 € R and G € R*>?* matrix Py € R™" such that

diag{ 02,302} GT
[ + diag{QzﬁQz}] 20 G0

Py, —X Pf
[ e B | 3y

(QF + PLi, YD)+ D) (Q4 + Pri,)) — 28Q3D(x) = 0, (32)
$0)=0, S@m)=0, (33)

=%

where B is unique determined by (24), ¥ € [0, ty], v= =
28
1 —e 2
®o@) IT
* 7y21]
28

T 1—e 2w

Do) = (Wij) o1 — (B diag{@2,302}81 + B diag(Q2,3Q2)E2 + E] GT 8, + B] GEy),

@) :[
(B diag{ Q1,302 83 + B diag(Q2,302)84 + E} G Ea+ B GEy),

Y1 = (Pri, + QDA @ + Aix) (Pri, + Q)+ P2+ P+ Y iy, PUs)
Jo=1
+28PL, + 01+ T Q2 + 6 Pri, My (0OM; (0)T Py,
+la+ea+eN® N +e ' QTM M ()" 04

72

= W[D(X)(ta + Pri, — BQ3) + (@ + Pri, — BQ3) D),

Y12 = (Pri, + QDB )F () K; (), d1a = —(Pri, + ODB; () F () K; (Gy),
Yis = —(Pyi, + QDB )F (o) K, (31), W16 =1(t)Ps+2BP],

2
Y10 = ﬁw@xgé‘ + P, — BQ3) + (QF + Pri, — BO3)D ()],
Yis=—0F + 4; )7 03, Y110 = (Pri, + Q0Ci(x), Y2 = —BX + pQH),
Yoa = —pQED, o5 = —pQUER), as = Bi (DF (o) K; G))T Q3, Y33 = —e Py,

2
Va4 = —ﬁviz Q3D (x) + pQR), Yas = PR, Yus = —(Bi(¥)F (o) K (8 @) 03,
Pss = (o — DQED, ¥ss = —(B; () F K@) GET 03, wes = 2671 P,
Yes =9 Pa, Y7 =—Pe M (1 — )01,
Yss = T Q2 — 203 + €5 L Q3M; () M; ()T Q3, W10 = Q3C; (),

2

T
Yrog = fw—ﬁ_)z[D(x)(QA; + Pri, — BQ3) + (QF + Py, — BQ3)D(x)]
—[D@E(Q4+ P, — BO3) + (QF + Pii, — BODED ()],
o [f -1 000 0 000] . [0 -IT 000 0 00
1=y I 000 -3 00 0>’ |o1 I 000 =31 00/
e [l -1 000 0 0000] o [0 -1 000 00 0
=|=|l1 I 000 -3 00 O0O0]”™|loI I 00031000/
T=[yf, 0 0 0 0 0 0 I, 0]
36
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Proof. Let £ is the weakly minimal generator operator of stochastic process {V (¢, o (t))}. For each o (t) =is (0 €
M), define

EVE+r o+ o) =ig) =V, i)
i :
According to the stochastic stability definition, it is first proved that conditions (30), (31) and (33) can ensure that

the closed-loop system (18) under the perturbation function § (x, r) = 0 is stochastically exponentially stable with an
attenuation rate 8.

Based on Halanay’s inequality in Lemma 4, it is derived that

LVt is) = %ﬂ) 34)

EV@,ie) + 28V ig) — B sup V(i+3,i6) =0, (35)
#e[—74,0]

then the closed-loop system is stochastically exponentially stable with an attenuation rate g and 8 is determined by
the condition (24).
Calculating the weak minimal generator of Lyapunov functional (29) along the solution of system (18), one has

X
dw (x,1) L
ENi(,io) =2 f £ (.00 Py, [w—&’, t)] dx + Zlmg i w0 Py j,w(x,1)
X Jo=

t

X X
3 3
:Z/w(x,t)TPL;D w;f”)dxuf / w(x,ﬂ)Tdﬂm%dx
t—z(t)

4

+2/w(x,t)TP2Tw(x,t)dx +2/ / w(x, T do Psw(x, f)dx

ET I

X X t—t(t)
+ 3w, g, wle, T Py, w(x, o). (36)
Jo=1
SVa() = —28Va(0) + / (e, 0T Quw(r, dx + f WPy r, 1 — ) Oyt — Tag)dx, @7

Tt
SV3() = —28V3(0) + / rgw (x0T Qaw(x, Hdx — / / POy, )" Qaw(x, D)dtidx.  (38)
X X t—ty
Combining the boundary conditions (5) and (6) and using integration by parts, one has

LVa(t)+ LVs(r) :2] VW(X,I)TD(x)Q3M

X

] 3
x4 2w, 0T ED ()03 w;f )

dw(x, 1)
at

dw(x, 1)

=2Vw(, )T D) Q3 =

_ 2/ %(D(x)vw(x, )03

—2Vuw(x, T D) Qs

dw(x, 1)
at

dw(x, 1)
ad

- dx 4+ 2w(x, )T ED(x)Q3

=— 2/ i(D(x)Vw(Jc, [))Qgde. 39)
dx ot
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Combining Lemma 4, integration by parts and boundary conditions, one has

2/ w(x,t)TPLI-U%(D(x)Vw(x,t))dew(f, TP, DE)Vw (X, 1)

=—2w(x,0)T P;, DX)Vw(x, t)f2/Vw(x,t)T¢(x)P1,;UVw(x,t)dx
S*w()_fet)T(Pl,igD()L)E‘FED(&)PI_JE,)W({J)
s E[ ‘ O D)Py; [wix, s 0ld 40
72(76—*)6_)2/ w1 — w e, D DGy, [w(x, 1) — wz, Dldx. 0)

According to Lemma 1 and Lemma 4, it is derived that

x ot
T
_/ [ L2611 dw (x, ) anw(x’ﬁl)dﬁldx

at ot
X t—ty
P dw(x, 9T dw(x,P) P dwx, )T | dw(x, P
X t—z(t) X t—ty
g 1 — e 2Bt _ _ 1—e 2Pt _ _
- eim (1 = :,2&(,) £; (Ddiag{Q2,302)&(®) + m# (t)diag{Q2,3Q2}§b(t))
28 o - 28 e .
< — Ty (87 dingl02.3028(1)) — Ty (8] (0dliagQ2,302)8(1)
2 ’ _
- (T 6B), @n
where G is a symmetric matrix with satisfying condition (30) and
B o ST, —w(x,t — 7 (e)]dx
“ Jolw@e, )+ wi, e =) — 25 [ w, #1)ddldx |
Bl | - [, — () — wix,t — mapldx
b St — o) +w,r — ) — s [I D w(x, 9)d01dx |

In view of the closed-loop system (18), for matrices Q3 and Q4, one has

0=[Qaw(x.0) + Qs 8"’;’; ’)]T[%w(x)w(x, 0+ ,Z:I:M (A () + A (s D)W (x, 1) — a"’;’;”)
+ iiu;jBf (VP (i) K (B (. 1 — (1) — ex (v, 1 — 7(1)) — e G ). @2
Similar tol :Oj),:ilt is obtained that
wa(x,t)TQZ%(D(x)Vw(x,r))dx < 2w, 0" QI DWEw(, 1)
) ﬂz x
~g g f[w(x, D~ w0l DT w1 — wix,Ddx. “3)

38

45



H.Jiand B. Cui Fuzzy Sets and Systems 432 (2022) 28—49

According to Lemma 2, for positive scalars €1, €2 and €3, one has

20 e, O Py, Awi (0, D x, ) = 2w (e, OF Pyj, My () F; (x, DN (0w (x, 1)

< e w(a, T Pui, M () (Pri, M; )T w(x, 1) + exw (e, T N; )T N yw (x, 1), @4
2u(e, O OF Ayies w0 (e, 1) < €5 e, YT OF My (2 QT M; (o) e, 1) + ew(e, T Ny () Ny (e, ),
@3)
T T
220D o nie e = 5 20D oag @5y 220
T eswe, o N )T Ny (w(x, ). 6)

For x € [x;—1, x;] and a symmetric positive definite matrix ¥, according to Lemma 4, one has
Xy
/ V@, t— ()T YV, —1()dx
X[-1

X X

= / Vw(x,tf‘c(t))TYVw(x,t7t(t))dx+/Vw(x,t7r(t))TYVw(x,t7‘c(t))dx

X1 Xy

2 ¥
3% f[w(x’fff(f))*w(ffz»fff(f)]TY[w(x,tfr(t))fw(fcl,t—r(r)]dx

Xp—1

2 7
+ % /[w(x,[ —1(@) —w@Et — OV Ywx,t — () — w1 —7()]ldx
X

9
- % e b= Ve e,  ~xEds. @7

Xi—1

It is easily derived that

t

28Vi(t,is) < 2Bw(x, t)TPL,-Dw(x, 1) +4p7(r) % / w(x, ﬂ)Tdi? Pyw(x,t)
t—t(t)

t t
1 1
2875 | — ,HTds | P —/ ,)dd | . 48
+26% | / w(x, D) | [ e @s)
t—z(f) t—t(t)
Substituting (36)-(48) into (35), one has according to Lemma 5

2V(r,i0)+2ﬁV(t,io)—E sup V(+7,i5)
#€[—11,0]
< &V (t,i0) + 2BV (t,i0) — BVI(t — T (1), i) — BVa(t — T(0),ig) — BVa(t — T(1),is)
< 8V (t,ip) + 28V (1,i5) — Bw(x, t— r(t))TXw(x,t — ()
x t—1(t)
_/ f Be Py, N Q1w (x, $)dddx

X t—ty

Xy

14
- Z / BVw(x,t — ()T Dx)Q3Vw(x, — 7(f))dx
=0
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<LV (tio) + 28V (tio) — B, — t () Xw(x, t — ()
X ﬁe’zﬁf’” t—z(2) t—t (1)
= w(x, )T dd 01 / w(x, $)dddx
Ty — 1)
X t—Tyr =1y
X]

z
= Z f BVuw(x,t — )T D(x)Q3Vw(x, r — 7(r))dx

l:Oxl_1

2
=Y ] 1@ Poz ©))m (¢)dx, @9

,l:OxZ_l

. T
where the matrix X satisfies Pl"”* X %3 =>0.
Combining conditions (33) and Lemma 3, it can be derived that
do(0) +y 2T T <0, (50
Do(rar) + y I < 0. (51)

According to Lemma 6, it can be obtained that ®o(z (¢)) < 0, which implies that

£V (i) —B sup V(+9i,) <O, 52
® e[—147,0]
Therefore, the closed-loop system (18) is stochastically exponentially stable with a decay rate of g under the condition
that the disturbance function § (x, r) = 0.
In the following, it will be shown that the closed-loop system (18) in a disturbed environment satisfies the Hy
performance with a decay rate of g.
Similar to the above analysis, in the presence of disturbances, one has

LV (t,is) + 28V (t,is)— B sup V(t-l—ﬂ,i,,)—/yzé(x,t)TB(x,t)dx
9 e[—11,0]

=0T @ O)m@) <0. (53)

Therefore, the closed-loop system (18) can reach the Hy, performance with a decay rate . This completes the
proof. O

Remark 2. It is worth mentioning that Vw(x, ) = V[w(x, ) — w(x, ¢)] is considered in the inequality (40). If one
considers Vw(x, ) = V[w(x, t) — w(x, ¢)], where the boundary condition is w (¥, ) = 0. According to integration by
parts, one has

2/w(x,t)TPl,jDai(D(x)Vw(x,[))dx
X

2

< —w(x, 0T (P, DX)E + ED(x)Py;, ) w(x, 1) — 2@%)2 / w(x, )T D) Py, w(x, Hdx. (54)

X
Theorem 2. Given positive numbers Ty, B, p, the closed-loop system (18) satisfies the Hoo performance with an
attenuation rate p if there are real numbers €, €3, €3, symmeltric posifive matrices P;, € R"" (i, € M), P3 € R,
Q1 eRY Qr e RP, Q3 €« RV gnd X € RV, the symmetric matrices Q4 € RV, G € R¥>21 and matrix
Py « R such that
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47



H.Jiand B. Cui Fuzzy Sets and Systems 432 (2022) 28—49

diag{ 02,302} GT -0
* diag{Q2,302} |~ 7
P, —X PZT
[ M g (56)
(QF + PLi,))D@) + D@)(Q4 + Pri,)) — 28Q3D(x) >0, (57)
(QF + PLi,)YD@E + ED@)(Q4 + Pri,)) — 203D @E >0, (58)
)0, d(ry) =0, 59
where B is uniquely determined by (24), ¥ € [0, tas], v = YZ_}
- 2 AT g &, AT o &, & 2. AT o
Bo@®) = ()8 — ——2 (&l diag( 02, 302)81 + Bl diag(05,305) 8 + BT GT & + I GEY),
2 1—e 2
5 o) 17T 28 T o g S =
P@) = [ Oi ) _yzl] = l_e—_zﬁw(ggdmg{Qz, 302)E83 + Bl diag{Q2,302) B4
+ 81 GTEs + B8] GEy), 0)

Y= (P, + ODA @ + AT (P, + Q) + (P2 + PH + Z Ty jo P1,je +28P1;, + Q1+t Q2
jo=1
+e P, MM ()T Pyj, + (61 + €2+ €)Ni )T Ni(x) + €5 @ Mi )M (x)T Q4
772

T AFE-x)?
V2= (Pri, + QDB @)F (i0)K; G, Y1a = —(Pri, + QDBi(0)F (i0)K; (&),
Yis=—(Pr;, + OB, (\)F (o) K; (%), Yhe =7(t)P3 +2BP],
Yig=—0F + 4,007 Q3,910 = (P1;, + Q)C; (x), ¥ =—BX + pQEy),
Yoa = —pQUED, a5 = —pQUE), s = Bi ()F (o) K; G)T Q3, Y33 = —e oy,

[D(x)(Qa+ Prr, — BQ3) + (QF + Pri, — £03)D()],

2
Vg = fﬁviz Q30 (x) + pQUEL), Vs = pQUR), Y = —(Bi () F (i) K; ) @3,
Uss = (p— DQUE), Uss = —(Bi () F i) K; @) 03, Ve = 2873 P3,
Vs = 9Py, Y7 = —Pe P (1yr — )04,
Uss =i Q2 — 203 + €5 Q3M; )M; ()T Q3. g0 = Q3C; (),

s [I -1 000 0 00] 4 [0 -I 000 0 0
M=l r o000 -3 00”7 oI I 000 =31 0

& [I -1 000 0 000] 4 [0I I 000 0 00
e 000 -3 00 O0”™ o I 000 -3 00

I
P=[yf, 00 0 0 0 0 ¥f,].

Proof. Combining inequality (54) and the vector n3(f), similar to the proof of Theorem 1, it can be obtained that

LV (tio) + 28V (tie) — B sup V(e +9,is) — f Y, T8 (x, Hdx
# €[—1p,0]

<O S @3 (1)

(55

=0, (61)

where 43(1 (¢)) equals the value when ¥ = 7(¢) for <f>(79) in the condition (60). O
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4. Design of the control gain

In this section, parameters of the controller will be designed based on the H., stability criteria given in
Theorems 1 and 2. To solve the problems with using the LMI tool in Matlab, we deal with nonlinear terms
&7 Py, My (M ()T Py, s €51 QuMi (0)M; ()T Q4 and €5 Q3M; (x)M; (x)T Q3 by Lemma 3. Thus, equivalent
results of Theorems 1 and 2 are obtamed in the following Theorems

Theorem 3. For positive constants Ty, B, E closed loop system (18) with the boundary conditions (2) and (3) satisfies
the Heo performance if there exist positive constants €1, €2, €3, symmetric positive matrices Py ;, € RV (ip € M),
P3 e R¥, Q1 e RP% 0y e RV, Q3 € RV and X € RV, symmetric matrices Q4 € RV and G ¢ R,
matrix Py € R™™ such that (30)-(32) and

P{(0) <0, Oi(ra) =0 (62)
S . . TSNS CH ¢ N ¢4
| P, Mi(x _ | 94 Mi(x) _ 9 xn * el 0 0
hold,where'r‘lA[ 09,5 ]’Tzfli 09, 5n 2t Q3Mi(x) # PL@Y= * * el 0}
’_ = * * E3IJ
4 28 T Sy g ST o
DG = (Y5 o1 — m(ngdlag{Q2,3Q2}n5+ngdmg{QzﬁQz}ng«\».:TGT._‘5+._‘6G._45)
&) 17 ~
q>c(19):|: 1) 52 :| T —2/Sr (u7dzag{Q2,3Qz}n7
+ Bl diag(Q2,302)8s + BT GTEs + EL GEy),
e [I -1 000 0 000000
=Z|lr 1 000 -3 00000 0
- [0 -T 000 0 00000
®Z|lo7 I 000 -3 000 0 0]
e _[I =T 000 0 0000000
|=|lr 1 000 -3 000000 O]
= [0 -1 000 0 000000
=~lor 1 o000 3700000 0]
Te=[vf; 0 0 00 00 ¢l;, 0 0 0 0],

and {1/f” 7 i is from {;; }1 5t in (33) with 1 and vrsg being instead by ¥{| and g, respectively:

m
¥ = Pri, + QDA + A (P, + Q)+ (Pa+ PY)+ Y miyj Prj,

Je=1

+28P1;, + 01+ T Q2+ (61 + 62+ )N ()TN ()
2

(” FD@Q@s + Pui, — 09+ (@ + Pui, — FOHDWI,
Vg =T Q2 — 203.

Theorem 4. Given positive numbers Ty, B, B, the closed-loop system (18) satisfies the Ho, performance with an
attenuation rate B if there are real numbers €1, €2, €3, symmeltric positive matrices P;, € RV (iy € M), P3 € R

01 e RP* Qs e RP*, Q3 € RP* and X € RV, the symmetric matrices Q4 € RV, G € R¥>*™, and matrix
P, € R such that conditions (55)-(59) and

d0)<0, Dam)=<0 (63)
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ey I T Tg“

[P, Mi(x) [oiMi(x) [ O | segn ’V ¥ gl 0 0
hold, where T4 = [ . ] Y= [ 0 | Te = M (x) | I = N ¥ of O
* * * 631J

e = (9518,

2’3 =~ . ~ ~, : ~ ~ ~ ~ ~
— ey (B9 diag(Q2.302)85 + (87 diag( Q230218 + (BT 67 8 + (897 68y ).

o) = Pf:ﬁ‘) rr }

,},21
28 - -
— Ty (B9 diag(Q2.302)85 + (B4 diag(Q2. 3028 + (897 67 B + (BT GE3).
ae 171000 0 00 00 O a070171000 0 0 00 0
=TI 000 -3 00 00O oI I 000310000/
a,E_I—IOOO 0 000 O0O0O0
A 000 -3 000 0G0 O
s [0 ;Iooooooooo
“0 000 -3 00 00 0]
190 0000 ¥, 00 0],

and {WU 7= is from { 1,[f,] F = in (59) with Wu and wsg being instead by ¥}, and Ygg of Theorem 3.

Remark 3. Notice that conditions (62) and (63) are bilinear because parameter K ;(%;) is coupled with parameters
P1,;,, Q3 and Qg, respectively. To solve this problem, we using the following algorithm:

+ Step 1, choose 7y, B, B, Pyi,, O3 and Qu;set Prj, = Py, QO3 = Q3 and Q4 = Q4;
o Step 2, if there is no feasible solution for (30)-(32) and (62), then reset parameters Py ;, , Q3 and Q4, otherwise,
output Py ;,, Q3 and Q4;

o Step 3, pick up 7y, 8, E, Py ;,, Q3 and Qq; output K (x;) with solving (30)-(32) and (62).
The controller gain of Theorem 4 is also obtained by using this algorithm.
Remark 4. To get I_’l,,-u, Q3 and Q4 in Step 1 of Remark 3, one can choose a suitable initial value K (%) by refer-
encing the literature and set K; (x;) = K;(x;), then, Py ;,, Q3 and Q4 can be obtained by solving LMIs in Theorem 3
or Theorem 4. In practice, they can also be chosen by experience or referencing the literature.
5. Numerical simulations

Two examples are given to illustrate the effectiveness of the proposed controller and control method.

5.1. A numerical example

Consider one-dimensional T-S fuzzy distribution parameter system with uncertain parameters

dwer,n a 2
2 = 37 DOV, ) + ) w00 D) (Ai () + Aui(x, D)w(x, )
i=1
2 2
+ D O D)B (ulx, 1) + Y i @x, )T (v, 1), ©4)
i=1 i=1
43
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the boundary condition is

Yw(©,t) =w(0,1), w(z,6)=0, >0, 65)
the initial condition is

wo(x) = — MO x e [x, 7] =[0, 7], (66)
where

w1 (0Ge, 1) =sin(w(x, )%, Ar(x)=sin(x), Bix)=1+0.1x, C1()=sin(x),

Fi =05, M;=sin(x), Nj=sin(x), Au(,)=0.5sn(x)sin(xr)sin(x),

w2 8(x,0)) = cos(w(x, )2,  Ax(x) =sin(2x), By(x)=1+02x, Ca(x)=cos(2x),
Fr=1, My;=cos(x), N;=cos(x), Au(x,r)=cos(x)cos(xs)cos(x),

sin(xt)

14+ x27

In this section, consider po = 0.01, & = 0.1, the set of finite modes of Markov chain {o (¢),¢ = 0} is M = {1, 2},
and the state transfer rate matrix is

D(x)=1+0.1cos(x), wv(x, )=

-1 1

I‘p:[ 5 _2]. 67)

The position intervals are divided into two parts, namely
50— 1)m Slm N T N 37

0,m]=U% [————, =], I=1,2 == = 68

[0, 7] 1:1[ 10 T 1, s 4y X1 4 X2 4 (68)
According to Theorem 1, one can derive y = 10.0024, and the controller gain are

7 37
Kl(z) =-4.2508, K, <T) =—4.2482, 69)
Kz(%) =-42112, K2<_3§_) =—4.2641. (70)

The left one of Fig. 1 shows the spatiotemporal evolution of the system (64) state without input control. According to
the left one of Fig. 1, it can be seen that the state of the system (64) is unstable without input control.

The right one of Fig. 1 shows the spatiotemporal evolution of the state of system (64) under the proposed event-
triggered controller. Furthermore, one can obtain that H (r) = E{folo Hw(x,t)Hzﬁzdt} o H6(x,t)H2£2dt. If
H (t) < 0, which means that (20) holds, which indicates that the H, control performance in (20) is ensured. It can be
easily found from the spatiotemporal evolution that the system (64) under the controller of event triggered sampling
data can quickly reach convergence. In addition, as shown in left one of Fig. 2, the evolution of the variable H (¢) is
given, indicating that the system (64) satisfies the H, performance.

As shown in the middle one of Fig. 2, the stochastic response of Markov jump mode o (¢) is given. According to
event-triggered conditions (10), one can derive event-triggered instant fz/ and the trigger time interval fg4 12 + Tp41 —
trh — 7, k € N. Compared with the traditional periodic sampling control, the control method based on event-triggered
control scheme can significantly reduce the unnecessary sampling data transmission and controller update frequency.
As shown in the right one of Fig. 2, the event triggered instant is shown on the horizontal axis, and the ordinate shows
the trigger time interval. As shown in Fig. 3, the response of the control input at the first spatial sampling location of
x = 0.257 and the second spatial sampling location of x = 0.757 are given, respectively.

Remark 5. Choose

P =0.1959, P12=0.1961, Q3=0.1961, @Q4=0.1961. 1)

According to the results of literature [28,29] and this chapter, under the initial threshold of pg = 0.1, 0.3, 0.5, 0.7 in
the event trigger condition, the maximum delay 77 allowed by the system (64) is calculated respectively.

44

51



H. Jiand B. Cui Fuzzy Sets and Systems 432 (2022) 28 49

wix,t)
wix.t)

i s s
1 \\\//K/"( 4
0

X

Fig. 1. The left figure shows the spatio-temporal evolution of the system (64) without input control; the right one shows the spatio-temporal
cvolution of the system (64) with event-triggered control.

1
08 4
\ 2 ;
S\
=10~ \ 18 4
10 \ 1
g k| 16+
2.2 4 £
= e
N 0s- o
30 - N 3
. 12
a5+ Sy 4
e S 1t ] — —
ol ] i T T L b
o 2 4 8 8 0 o 2 4 6 [] 10 o 1 2 3 4 5 8 7 8 9

t t 1
Fig. 2. The left figure shows the evolution of the variable H(f) = E {f(:“ |Jur(x, I)||2£2dl] - yzj;)l 0 |18(x, 1)

swilching trajectory of the Markov jump mode; the right one shows the release instants and release intervals inf
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Tig. 3. The left figure shows the trajectory of the input at x = 0.25x7; the right one shows the trajectory of the input at x = 0.757.

As shown in Table 1, the admissible delay cannot be obtained by using the results of the work [28], which indicates
that the results of the work [28] are conservative. The admissible delay can be obtained by using the results of the
work [29], which indicates that the results of the work [29] are less conservative, but the maximum delay is smaller.
The allowable delay obtained from the results of this chapter is larger, which indicates that the results of this paper
are less conservative.

As shown in Table 2, one can derive the number of the sampled-data received by the controller under different
sampling periods, where the number of the sampled-data received by using the periodic control method is 1000,
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Table 1
Calculate the maximum allowable delay 737.

Different methods po=0.1 po=0.3 po=0.5 po=07

28] NaN NaN NaN NaN

[29] 043 0.40 0.39 038

Theorem 1 0.71 0.64 0.60 0.59

Theorem 2 0.71 0.64 0.60 0.59
Table 2
The amount of sampled-data received by the controller within ¢ € [0, 10] is calculated under different sampling
periods A.
Different methods h=0.01 h=0.03 h=0.05 h=0.07
The periodic control method 1000 1000 1000 1000
Event-triggered control scheme with constant threshold 74 46 43 36
Event-triggered control scheme with adaptive threshold 64 43 37 34

Table 3

Calculate the maximum allowable delay 77 using Theorem 1.

(Fi.F) (051 (0508 (03,08 (03,05

™ 0.71 0.70 0.64 0.53
Table 4
Calculate the amount of sampled-data received by the controller within ¢ € [0, 10].
(F1, ) 0.5,1) 0.5,0.8) 0.3,0.8) 0.3,0.5)
The amount of triggering event 64 68 75 79

the number of the sampled-data received by using the control method based on event-triggered control scheme with
fixed threshold is significantly reduced. It can be seen obviously that the control method based on event-triggered
control scheme with adaptive threshold receives the minimum number of sampled data. Therefore, the event-triggered
controller based on adaptive threshold proposed in this paper can minimize unnecessary data transmission of sampling
and controller update frequency. Thus, resources can be saved more effectively and the service life of the controller
can be extended.

Remark 6. In the following, we discuss the impacts of actuator faults in the following two aspects: a) from Table 3, the
maximum allowable delay 7y is smaller as parameters (Fy, F2) decrease. b) from Table 4, the amount of sampled-data
received by the controller is larger as parameters (¥, F») decrease.

5.2. A catalytic rod

The event-generator-based T-S fuzzy control of the temperature profile of a catalytic rod is discussed. The dynamic

model with exogenous disturbance v (x, f) is given in [36] as follows:
2 5 o
% = d% +a@(e T — e V) fe(f@ux, 0 — wix, 0) + vix, ), a2

the initial condition is w(x,0) = wo(x) and the boundary conditions are Vw (0, ¢) = 0.5w(0,¢) and w(w, ) =0,
where w(x, ), a(x), ¢, d, b and u(x, t) are the temperature in the reactor, heat of reaction, heat transfer coefficient,
dimensionless diffusion coefficient, activation energy, manipulated input, respectively; f(x) = ¢ f(x) is an actuator
distribution function.

Parameters of the system are given for x € [0,7]: d =1, a(x) =60 — e 01X pb—4 c=2, f(x) =0.1cos(0.1x),
the initial condition wo(x) = 1.7sin(x) and v(x, ) = % The open-loop evolution profile of rod temperature is
shown in the left one of Fig. 4.
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State x(s t)
State x(s t)

Position s LY Timet Position s

Time t

Tig. 4. The left figure shows the spatio-temporal evolution of the system (72) without input control; the right one shows the spatio-temporal

evolution of the system (73) with event-triggered control.

Following [36], the system can be exactly represented by the following T-S fuzzy system.
Rule I:TF w(x, 1) is not “about 1.7731”, THEN
dw(x, )  wlx. o .
M = ) + A(x)yw(x. ) + Bi(x)u(x, t) + vix, t):
a Ix2
Rule 2: IF w(x, 1) is “about 1.7731”, THEN
dw(x,t)  w(x, 1)
—_— = L A WX, ) + Ba(x)ul(x, 1) + i, 1),
at dx?
where Aj(x) = —¢, A2(x) =0.1353a(x) — ¢, B1(x) = Ba(x) = cf(x), and membership functions are given as fol-
lows:

v
0.1353w(x,}—(e o0 —o~?) .
po(w(x, 1)) =1—puy(wix, 1)), pr(wx,1))= 0.1353wix 1) v w0
04582, w(x,t)=0.

By using a standard inference method. the following form of weighted average of the local models is given

4 . a2 ) 2
dw(x,t)  dw(x, 1)
— =+ ) i, D) AW, 1) + Bux, 1) + v(x, 1),
at ax e
Considering the actual situation may be that the measuring tool is not accurate enough, the uncertainty system is
discussed in this example as follows

dwx,t)  Pwx,t 2
%) = %) + ;lti(uy(‘ht))(Ai(X) + Agix, D)w(x, 1) + Bx)ulx, 1) + v(x,1), (73)
where A, (x, ) =0.1sin(xt) and A, (x, 1) =0.2cos{xt).
In this example, pick up pp = 0.02, = = 0.1, the set of finite modes of Markov chain is M = {1, 2}, and the
-15 15
3 =3

{1=1,2),%1= % Xp = ?TT According (o Theorem 1, one can obtain the following paramelers:

transfer rate matrix is I'), = ] The position intervals are divided into two parts [0, 7] =U7_, [”;2'1 %1
b4 3n T 37 -
K, (Z) =—-2.0762, KI(T) =-2.1713, KZ(Z) = —9.3311, KQ(T) =-10.4299, y =9.5476.
The left one of Fig. 4 shows the spatiotemporal evolution of the system (72) state without input control. According
to the left one of Fig. 4, it can be seen that the state of the system (72) is unstable without input control. The right one

of Fig. 4 shows the spatiotemporal evolution of the state of system (73) under the proposed event-triggered controller.
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Fig. 5. The left figure shows the evolution of the variable H(f) = E [ T jws, t)ll%zdt] =72 [3° 118x, 2112 at; the middie one shows the
switching trajectory of the Markov jump mode; the right one shows the release instants and release intervals inf() = 1A + T34 1 — fph — 71

Furthermore, one can obtain that H (r) = E {jom [lw(x, t)||§2d[} -y N8 x, t)||§zdt, If H () < 0, which means
that (20) holds, which indicates that the H, control performance in (20) is ensured. It can be easily found from the
spatiotemporal evolution that the system (73) under the controller of event triggered sampling data can quickly reach
convergence. In addition, as shown in left one of Fig. 5, the evolution of the variable H (r) is given, indicating that the
system (73) satisfies the Ho, performance. As shown in the middle one of Fig. 5, the stochastic response of Markov
jump mode o (¢) is given. According to event-triggered conditions (10), one can derive event-triggered instant #;4 and
the trigger time interval f; 412 + 41 — fxh — 7, k € N. Compared with the traditional periodic sampling control,
the control method based on event-triggered control scheme can significantly reduce the unnecessary sampling data
transmission and controller update frequency. As shown in the right one of Fig. 5, the event triggered instant is shown
on the horizontal axis, and the ordinate shows the trigger time interval.

6. Conclusion

This paper studies the adaptive event-based Ho, control problem for a class of T-S fuzzy distributed parameter
system with parameter uncertain and actuator fault. An event-triggered control scheme with adaptive threshold is pro-
posed, which is superior to the event-triggered communication scheme with constant threshold in performance and
can minimize the number of sampled data transmission. Furthermore, a T-S fuzzy controller based on the adaptive
event-triggered sampled data is designed. Based on a new Lyapunov functional and inequality technique, the stochas-
tic exponential stability criterion of the closed-loop system is obtained, and the controller parameters are designed.
The new developed inequality can reduce the conservatism of the stability criterion. Finally, the effectiveness of the
theoretical calculation results is verified by two numerical simulations, and the results are compared with the relevant
literature in the simulation, showing that the methods and results in this paper are less conservative.
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Abstract

This paper deals with the point control problem for a class of distributed parameter sys-
tems with time varying delay induced by the network. To eliminate the effect of time delay,
a predictor with the time-varying gain is designed to predict the state based on the sampled
data. Meanwhile, the prediction error vanishes exponentially with the desired decay rate.
To lighten greatly network loads and effectively improve the utilisation of the resource, an
event-triggered communication scheme is proposed to determine the transmitting of nec-
essary sampled data. Then, based on the point feedback controller, the exponential stability
condition of the distributed parameter system with the event-triggered scheme is derived
in the framework of linear matrix inequality. Furthermore, the feedback gain is given in
this paper by using the Lyapunov-Krasovskii method where a novel Lyapunov—K rasovskii
functional is constructed. The event-triggered time interval is presented to show the num-
ber of maximum allowable packet loss. Finally, an example of a food web model is given to

1 | INTRODUCTION

A large body of industrial processes and physical ecological phe-
nomena, such as heat transfer [1], electric and magnetic fields
[2], particle diffusion [3] and food web model [4], are modelled
as a class of system called distributed parameter systems (DPSs).
The dynamic analysis and control of DPSs are more difficult
than the lump parameter systems (LPSs) due to the spatial and
temporal property, while it is more reasonable to use DPSs to
depict the processing of a practical case than LPSs [5, ¢]. That is
why extensive efforts have been devoted to DPSs in these recent
decades, and a great number of results and methods have been
developed for DPSs, see the references [7-13] and the cited
work therein.

In view of the wide use of teleoperated and networked sys-
tems, the control problem of systems with delays is ubiquitous
and challenging. The time delays can be generated as an intrin-
sic part of the controlled physical process or by the implemen-
tation of a feedback loop. The predictor-based control method
is an effective way to deal with the time delays, which has been
investigated and applied successfully for several decades, espe-
cially for finite-dimensional systems, see [14, 15] and references

illustrate the effectiveness of the obtained results.

therein. It is an interesting area, while it is just opening up
for research on infinite-dimensional DPSs. Recently, as the first
attempt for the reaction-diffusion network system with constant
long input delay, a Smith predictor-based feedback design was
proposed in [16] to compensate the time delay, which is based
on the Smith predictor proposed in [17]. Since then, the pre-
dictor feedback control method was shown in [18] for DPSs
with input delay described by transport partial differential equa-
tion (PDE). Very recently, the stabilisation problem for a class
of linear DPSs with a known constant delay was discussed in
[19], where a predictor-based point controller was constructed
to solve this problem. To be realistic, time delay [20] in the
practical systems should be time-varying delay other than con-
stant delay due to the change of environment and the aging of
components. The current study, which is inspired from the work
in [19], aims to design a predictor to effectively compensate the
time-varying delay induced by the network.

For the networked system, the capacity of the signal data
in the channel is limited, and consequently how to reduce the
network workload and save the node energy is a matter of great
interest. To this end, an event-triggered communication scheme
(ETCS) is proposed to determine whether the sampling data is

This is an open access article under the terms of the
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necessarily to be transmitted. However, for the infinite dimen-
sional case, very few works on event-triggered control of DPSs
are available. Until recently, event-triggered control problem of
DPSs was solved in [21] by using model reduction approach.
The event-triggered-based control method can greatly lighten
network loads and avoid wasting resources, however, for the
systems with spatially dependent diffusion coefficients, it is
not applicable directly. To compensate for this, a distributed
event-triggered networked control approach was presented in
[22] for a class of DPSs governed by semilinear diffusion PDE.
Moreover, an event-driven scheme was used in [23] to reduce
the frequency of the signal transmissions between the observer
and the controller. It should be pointed out that the above
studies [22, 23] fail to take into account the effect of network
latency on the system, and the corresponding results cannot
be applied to the control of distributed parameter systems
with network time delay. Although the network time delay
were involved in the work [19], it is unrealistic to consider that
the network is a constant time delay. Worse still, the study in
[19] is failure to consider that overmuch sampled-data trans-
mission can cause network channel congestion and waste of
resources.

Motivated by the above discussion, this paper focuses on the
predictor-based point control problem for a class of DPSs gov-
erned by reaction-diffusion networks with time-varying delay
induced by the network. To eliminate the effect of time-varying
delay, a predictor with the time-varying gain is designed to pre-
dict the state. Meanwhile, the prediction error vanishes expo-
nentially with the desired decay rate. Then, by using the point
feedback controller based on the predictor, the exponential sta-
bility condition of the DPSs with the event-triggered commu-
nication scheme is derived in the framework of linear matrix
inequality (LMI). Moreover, the feedback gain is given in this
paper by using the Lyapunov-Krasovskii method where a novel
Lyapunov—Krasovskii functional is constructed. The event-
triggered time interval is presented to show the number of max-
imum allowable packet loss. Finally, a food web model example
is shown to illustrate the effectiveness of the obtained results.
The main contributions of this paper are summarised as fol-
lows: (1) we construct an improved predictor with the time-
varying gain to deal with the time-varying delay induced by the
network, which is different from the predictor in [19]; (2) a
novel Lyapunov-Krasovskii functional candidate is constructed
to derive the conditions guaranteeing exponential stability of
prediction error systems; (3) an extended Jensen’s inequality and
some useful lemmas are developed to overcome the difficul-
ties in the stability analysis process, which contribute to reduce
the conservatism of stability conditions; (4) compared with the
observer-based point control method used in [19], we tend to
take advantage of ETCS for the networked system, and pro-
pose an ETCS to determine the transmitting of necessary sam-
pled data, which can greatly lighten network loads and effec-
tively improve the utilisation of the resource.

Notations: Throughout this paper, Q = [0, /], Aw(xr) =

w(xr)? Ow(x 7 .
M, Vi(x ) = 2250 R” denotes the n-dimensional
B2 ax

Euclidean space. £2(0,7) is the Hilbert space of square
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integrable functions over (0,/) with values in R and

I w(x2) | po= ﬂfﬂb w7 (3, F)w(, #)dx < 00.

one  writes
H (0, 0 = w(xr) € L2(0,1), Vol (s7) € L2(0,/) s
the Sobolev space and its norm by || w(x/) =

\/fﬂb wT (5, £)w(o £)doc + ffVWT(x,r)Vw(x,t)dx. The nota-
tion X 2Y (or X >Y ) means that X —Y is positive
semi-definite (or positive definite) and the superscript "7
stands the transpose. A, (X) is the minimum of all eigenval-
ues of matrix X, A,,,,(-) is the maximum of all eigenvalues.
minfa, 4} is the minimum of two real values 4, ». max{z, 4} is the
maximum of two real values 2, 4. N denotes the set of positive
integers. N means the set of integers.

2 | PRELIMINARIES AND PROBLEM
FORMULATION

2.1 | Description of systems and problems

Consider a class of DPSs which can be modelled as follows:

Ow(x, £)

e D A w(x £) + Aw(x 1) + #(%, 1)

)

where w(x, 1) = [my (%), #5(%1), ..., w,,(x,t)]r; the spatial
varable x € Q =[0, /], and #(x1¢) (=1,2,...,%) repre-
sents the 7 sub-system satisfying #;(x,7) : Q X (0, +00) = R;
# is the number of sub-systems in the DPSs; Aw(xz) =

Bul(r)  BuA(h Bu (e, i
[_slil_’ —aizu) . %]T;D = diag{4}!_, the constant 4;

is the diffusion coefficient of the 7; sub-system and is hence
assumed to be positive; 4 is a constant matrix; #(x, /) € R” is
the control input.
The boundary condition and initial value condition associated
with the system (1) are given in form
w(0,2) =0, w(?)=0,

? € [0,+0) @

w(x,0) = wy(x), (x) €Q 3
where () € H'(0, /).

Problem description: In this work, we consider the feed-
back control problem for a class of distributed parameter sys-
tems described by system (1) with network induced time-varying
delays. In the process of feedback control, the output signal of
the system needs to pass through a network and the time delay
induced by the network is 7(r). When time delay 7(7) is larger,
a feedback controller that relies on the delayed signal is diffi-
cult to control the system (1) effectively. The purpose of this
paper is to design a predictor to compensate the network delay
7(7), meanwhile, energy saving and workload reducing need to
be take into consideration when the control is processing. Thus,
a predictor based on a event-triggered communication scheme
is proposed to predict the state of the distributed parameter sys-
tem (1) and to reduce unnecessary data transmission throughout
the networked control system.
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2.2 | Predictor based on event-triggered
sampled data

Let Q be divided into N, sub-domains Q,:€V, =
{1, 2,.., N}. For each sub-domain Q;, the sensor is set
at x; € Q;, then Q; is divided into Q‘L and Qf by spatial
point ;. And the length of QXL and Q,R are denoted by y;;
and y;z, respectively. We assume that: /N, in-domain sensors
are assumed to provide point measurements of the state,
which are sampled in time; the measured outputs are sampled
at a constant period 4 the sampling instants are listed as
{8l = 1,2,..} = §; the event-triggered instants are listed as
{nble=1,2.}=5cCS5.

The predictor based on the event-triggered sampled data in
this work is given as follows:

8 1) 5 .
TR DAB(%, 1) + A, £) + #(%, 1)
+ Lot 3 g (i, ) = wteh)] (4
i€V,
where #(x,7) be the prediction state, and y;(x) =
1, x€Q
g Y, PE b+ T fe b+ Tay), Le 04D
{0, CEQ, Peh +To tpg1 b+ Tpr), Le

is the time-varying injection gain which used to ensure the
prediction error decays with the rate &t, and L will be designed
later. Moreover, #(x,#) =0 for # € [-00,#5+ Tp), which
means the predictor is not working in 7 € [—00, 7,4 + 7)) due
to the time delay.

The boundary condition and initial value condition associated
with the system (4) are given in form

w(0,)=0, #(r)=0, r€[0, +o0) 5)
Bl r) = Bplt), x€Q, 1€ (=, nh+1ty) (6)
where x€Q, 7€ [b+Ty fah+Te), Bp(xr) €

H'(0, /), ik is the first event-triggered instant of the sys-
tem (4).

The ETCS is used to determine the error between the pre-
dicted data and the original system data, which aims to ensure
effectively predict the original system. If the error is within the
allowable range, the new error data will not be transmitted; oth-
erwise, it will be sent to the predictor. More specifically, the
latest transmitted error data is #(x, 1p5) = (2, 13.5) — w(x, 126),
whether the new error information #(x, 7.4 + £ 5) between the
plant and the predictor needs to be sent to the predictor
depends on the following condition:

N,
D0+ V)eT (o teh + EBQEs 1ib + L)
i=1
N,
<0 Y i + i) (i 1eb+ EHQB(, 55+ €8 ()
i=1
With €(, feh LB = By Beb+ LIy — B, £b), whee G €
(0, 1), Q is a symmetric positive matrix, £ € N, . If the cur-
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rent error data violate the event-triggered threshold condition
(7), the current error information will be sent to the predic-
tor side; otherwise, this current error information will be dis-
carded directly. Then the next release instant 7.1 4 (& € N) can
be determined by

tapr b= (e + 1)b+lng.n {t’bl

N,
E(y‘-L + 06T (o 6+ € HYQe (o6, 16h + €5) >

i=1

N,
o 2 i + ¥R (4, 56h + EBQi(o5, 14h + €4)

} - @
=1

Remark 1. The event condition (7) with #(x, 7¢4) # 0 can be
rewritten as

1
| Q7 (o(es 168) — B b+ €4) Il 2

13
<N o2Q%5(x, b+ £4) || c2 )
which implies that the relative error between the current sam-
pled signal and the last transmitted signal less than a thresh-
old. As mentioned in [24], the event condition (7) can over-
come some drawbacks of another event-triggered scheme with
the form

I (o 2e8) = (s 7eh + €B)) Nl 2 0 (10)
for example, when the state of the plant is approaching zero,
there may exist an instant 74 such that (7) is satisfied for
the threshold o, which means there is no events to be trig-
gered, then there is no signal to be updated after the instant
7:h. However, the event condition (7) proposed in this paper
can make sure that the signal can be updated even after the
instant 7 4. That is the main idea why we propose the event-
triggered scheme (7). Moreover, the threshold o € (0, 1) can
be viewed as an index of measuring the relative error between
the current sampled data and the last transmitted data. When
the threshold ¢ infinitely close to zero, the £ in (7) should
take the minimum value £, then the next release instant 74,1 %
should be 7¢4 + 4, which implies that the event-triggered con-
trol scheme reduces to the traditional periodic time-triggered
control scheme. Therefore, the event-triggered control method
in this paper show its advantage over time-triggered control
approach used in [19] and take the method in [19] as a special

case.

2.3 | Point control scheme

Now, we divide Q into N, new sub-domains denoted by ] €
V, =11, 2,..., N} For each sub-domain Q ;, the actuator is set
at5; € Q, then Q, is divided into Q]L and Qf. And the length
of Q[,“ and Q:? denote as 7, and 7, respectively. It should be



4]

JIET AL,

pointed out that this division is independent of the division for
setting sensors, that is to say, it is possible that the point set V), is
independent of V,, and sensors and actuators are not necessary
to be set at the same locations.

In this work, we consider the point controller modelled by
the Dirac delta function in the following form:

oor) = Y, B(x— &), (%0)

JEV,

(1)

where §(x) is the Dirac delta function representing point actu-
ation; %, / € V, is the position of the j; actuator for each sub-
domain &, € Q, 7 € V..

The control signals are chosen as

(3, 0) = =Ki(, 1), jEV, (12)
where X, is the control gain which need to be designed.

Define d(r) =7 —13h and T < d(f) < Ty = maxfre b+
Tpyq — 22k — T4} Then, system (1) yields

Bu(x,f)

T DAw(x, 1) + Aw(x, 1)

= Y 8 — 2K, (%, 14h)

JEV:

(13)

where x € Q,1 € [fph+ 1, 11 h+1).
The boundary condition and initial value condition associated
with the system (13) are given in form
w(0,7) =0, w(r)=0,

t €[0,4+00) (14)

w(t) = wp(x 1), x€Q, r€&[-d()0] (15)
where (2, £) € H' (0, /).
The predictor dynamic model (4) with point controller can

be constructed as the following form:

Oiv(x, 1)
or

=D A ¥(x 1) + A1)

+ Lol N 2,0l 14h) — w5, 268)]

i€,

= Y 8= %)K,i(57)

€V,

(16)

for 7 € [reh+ Ty, 7z415+ Tpyq) with the boundary and initial
conditions
#0,7)=0 () =0,

7 € [0,+00) an

(18)

Bo 1) = Bosr), 1 € (=00, foh+Tg).

The solutions of (16) in weak sense has been demonstrated in
[19].
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3 | MAIN RESULTS
In the following, the synchronisation analysis between original
system (1) and predictor (4) will be given, which aims is to study
the effectiveness of prediction system. Then, the point feedback
controller will be designed for the system (1).

First of all, some useful Lemmas are given as follows:

Lemma 1 (Wirtinger Inequality, [25]). For x € H'(a,4), if
b(a) = b(h) =0

(b—a)* | db(x)
Il 5oy I1%,< — == B4
holds; and if b(a) = 0 orb(b) = 0
4b—ay  db(x)
Il &) I1%,< =1 1%,

holds.

Lemma 2 (Halanay Inequality, [26]). Ler 0 <o, <@y, 52>
0, d>0and V(t): [to—4d o) — [0, c0) be an absolutely con-
tinuous function such that

V) S~V +a sup V+E), V2 (19
—h<E<0

holds. Then the following statement:
V) <@ sup Vin+E), Vr2rn (20
—k<g=<0

hboids, where &y is the unigue positive solution of
ap = @y — ek, 21
Lemma 3. For f(x) € H* (@, b), there exists a positive symmetric

matrix O, scalars Xy > 1 andxy > ay — ay such that

az
/ 6T Qf ()dx < minfCy, Cp} @)

!

where

G =% — @) fla)T Of (@)

2 &7 (x)
dx

4% (@ — @)
(ke — 1)
Co = o f(a)T OF (@)

4y (ay — @)
i — gt ar) Jy

af(x

ay

2 4T ) PriC)

= dxdx.

Proof'is given in Appendix A.
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Lemma 4. (Esxtended Jensen’s Ineguality,) For any positive definite
matrix M € R™", any non-sero scalar &, scalars a < b and a function
() € C([a, 8], R™), the following inequality holds:

b
/ DT (\Ma(s)ds

a

b b
a
> m/ coT(:)drM/ w(s)ds

00 e‘“b
+ 2 ?cpf 0)Mp, () @3)

where 0= [} $2(0)de >0, 9,0) = [ i), and 5(s) =

s 3 b
e2 w(s) — h fa w(s)ds
2 m—1 21
a+b a+b
$anl9) = (:— z ) + 2w (x— . )
+3 Zm+1 m—1 3 2i+1
a a
oma1 (5) = <‘_ 2 > + ;brm' ("_ 2 )

with the assamption that, fori = 0,1,2, ..., m— 1

b )
/ o () os(s)ds =/ Poms1 (Paisr (9)ds = 0.
Moreover

b T
_pdt (s) da(s)
PGl Bl 0 b AP N
/; Z M =

o

2 e - @) M) - ()
+ 2 ~oT o)) @
holds.
Proofis given in Appendix B.

Lemma 5. For any positive definite matrix M € R™", any positive
saalara > 0, scalars a < band a vector-valued fundtion () = [a, 8] =
R™) such that the integrations below are well defined, then

b T
dw* (s)  dw(s)
=8 L g
/ ¢ M ds

a

a

> m( 1TM§1 i §;;TM52 +2§1TY§2)

(25)

bolds with any matrix Y, and &1 = @ (b) — w(s), & = w(s) — w(a),
and
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M YT
2 0.
Y M 20 @)
Proof'is given in Appendix C.

3.1 | Synchronisation analysis between
original system (1) and predictor (4)

The purpose of this sub-section is to study the effectiveness of
prediction system. It is clear that stability of observation error
system can guarantee effectiveness of prediction system. Then,
we will analyse the stability of considered error system.

Denote #(x, 7) be the prediction error between systems (1)
and (4), then it can be derived that

55
”é’:‘ ) 2 DA 3(51) + Al 1) @n

forr € [0,7h + Tp);and for# € [tph + Ty, tpy1 b+ Tpyq)

@ =D A (1) + Abl 1)
+ La®d0 N pi)il s —de))  (@8)
iev,
with the initial and boundary conditions

B(0,1) =0, #(j7)=0, 7€ [0,+c0) 29
(1) = Bp(x2), x€Q, r€[-d({)0] (30

where () € H'(0, /).
Remark 2. Since that sampling variables exist in predictor sys-
tem [19], the error system cannot be defined in the time inter-
val [1z5 + 1, 7441 £ + r]. Obviously, the predictor model shown in
[19] is difficult to be analysed.
For convenience, we define a new variable
osr) = ' B(xr), x €Q, i€V,

m(o,t — d(t)) = o # — d(F)) — g3, # — d(F)).

Since
3(%1) s 2 OB 1)
= eV B(x, 1) + ¢ —

and based on (28), one can obtain

Azx(1)

5 =2 A (1) + (A= D)% 1)

+L Y )Rt =) + ml t = T())]

iev,

31
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for# € [teh+Tp, tpp1b+Top1), REN,.

Define the following variables: ¢; € R*™7* with the 7 ele-
ment being identity matrix / € R"*” and others being zero
matrices, for example,e; = [0 700000]

P =—(B +P)D~D(R + P) +a,(BD + DB);

. T ”1T
Y =] [BA+ATR + (a +200)] + 5 + /—ZP]el
Y3 a
+ symie] B L(e; +e3)} — age; Rey
+ el Ry + (Ty — To)Roles + M1 hel (5, — §)es

< %
- Ml Syeg — mm—(e1 — &) Ri(er —es)

T #
= Aol ) &)

+ (o2 =€) Ry(ez = e5) + symi(es — 1) Y (ez — es)l]

+ symi(Biet + By + Bey)T [(4 + apl)e;

+ Le; + Les — ey}

+ ae:Qq —(e;—ey— Cg)TQ(C7 —e; —e3).
Theotem 1. For given positive scalars Tpg, Te, o, &4, &, O €

(0, 1), there exist positive matrices Py, 51, S5, Ry, Ry, P, and any
matrices By, Y such that

|

Yot

B YF

v RZ]ZO P<O,

2
a,m®

4ny

el (BD + DB)e; <0, 32)

a,m?
2
Wy

Wi

el (BD+ DBR)e; <0
hold, then the solution of prediction ervor system (25) satisfies

_ (a2
I #50) I Ce 2 [ w(x0) llan 33)
Jfor some C > 0, which means that state of system (1) can be validly pre-
dicted by system (4) where the decay rate Oy is unigue dezermined by (21)
and 2y < &, is some positive salar.
Furthermore, under the event-triggered scheme (7), if (33) is satisfied,
then there exist G, 0o, A, Tp, and Typ such that

1
2In (1 + 0'5>

<
b

< (34

and

@C+Dh<tTH—714 (35)

66

Moreover, the maximum number of allowing packet loss can be obtained

2ln (1 +o‘13)
be, = 2a) ’

Progf. First of all, we define the following variables:

(36)

max =

¢ = [ Gor) ¥ (s r = 2@) w7 st = 2]
T

¢, = [atTBEx,f) e =zl sl —rM)T]

¢ =7 ¢F Fownbren) .

We suggest to construct the following Lyapunov—Krasovskii
functional

sl

II

V) =Y, Vi) @7)

f

where
V1<r)=/ﬂ¢Te{E=1§dx

Vo) = / VT (37)(BD + DB)V(x1)dx
Q

¢

/ e“‘(‘_’)gre{ﬁq{d:dx
Q-1

()

=Ty
Vi) = / / 16T T Sy dsdxe
Q-1

z 3
Vilr) = / / / AT el RieL dedfdx
QJi-1, 78

Tar ?
Vi) = / / / A160¢Tel Ryeyd dsda.
QJ7 -6

Taking the partial derivative of (1), one has
Vi +ati) =2 [ RD Asesnax
w2 /Q ¢TI B(A+apl + %mlgdx
+ 2/ (Tl BLelde + 2/ ¢TelRLestdx  (38)
Q Q

where the equation is obtained by using integrating by parts and
taking into account the boundary conditions
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l 7

2 / 27 (55 2)BLD A\ 35 1)dbe
Q
= 7 I
=227 (% )RDVz(5 1)y
-2 / V=7 (x,1)R DV 7)dx
Q

=-2 / VL (5 1) B DVg(x, £)d. (39)
Q

By using integrating by parts and taking into account the
boundary conditions, one has

Vo) + o V3

OVz(x 1)

at‘b‘

=2 / V7 (% )(BD + DB)
Q

+a& / V2T (5, 1) (BD + DB)Vz(x 1)dx
Q

=2 /n A (1) (BD + DB)ed i
+ay / V2T (1) (BD + DB)Vz(%1)dx.  (40)
Q
Vi) + ey Vi(r) = / ¢Tel Sieiax
Q
— TR / ¢Tel Sl do. (41)
Q
Va@) + o Vi(r) = % / ¢Tel Sesddx
Q
— U / ¢Tel Sel dv. (42)
Q

By using the extended Jensen’s inequality Lemma 4, one has
V() + e Va(r) S 7 /ﬂ {7 e Rieyddx

- /ﬂ (e — e Riler — e (43)

By using the extended Jensen’s inequality Lemmas 4 and 5,
one has

Vo) + a Vo) < (T —T2) /n ¢Tel Ryeyld

e T - T
D — 1 n[§ (es —€2)" Ryles — &)

+¢7 (e) — e)T Ryle, — e}

+2T(es — ) Y (e — €c) ] dx (44)
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5 YT
where Y is an any matrix satisfying [f, R 1=>0.
2

To deal with the term with respect to es¢ in (44), we employ
the descriptor method. Namely, from Equation (31), there exist
the symmetric matrices P; and P, such that

0=2 /Q (Bl + Bed 17D A 20o) + (4 + apDerd

+ Leyd + Les{ — s8] doc. (45)
Similar to Equation (45), one has
0 =2/[DAg(x,t) + (A+ aplyed + Lexd
Q
+ Les — e8] D7 B, Deydx. (46)

Integrating by parts and taking into account the boundary

conditions, we obtain

2 / 7 (1) B[ D A\ 3, 1)dx
Q
=-2 /(; VT (o, )BT DV (o 1) die. o)

Since £(0,7) = 2(/ #) = 0, based on condition (32) P < 0 and
combining Lemma 1, one has

2
/n Vg(x,t)PV:g(x,r)dxs% /ﬂ (Tl Peilde.  (48)

From (38) to (48) and and combining ECT condition (7), one

/OR T ¢ dx

“9)

2

icv,

V() S —q V() + Z /QLgTd)g“dx+
v, Jo!

+ta, Y

/ ¢Te] Rexd .
eV, /0,

For each Q; (:€V,), one has m(x;,#—1()) =0 and
V(o t —1(1)) = =Vg(2,# — (). For each x € Q; by using
Lemma 1 one has

- / Vel (52 = T(0))(BD + DR) V(e 1 — (1))
of
7[2

- [ @D Dt
4y, Jak

U R

(50)

. /0 VT (57 —TONBD + DB)Va(es s = 7)) d

4

2
<-— / ¢Tel (BD + DR)exdx.
nR
'R i

- (51)
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Combining with Equations (50) and (51), it is derived for any
a, with 0 < &, < @ that

—a, sup V(r+e)<—%2/ Tel Byl dx
Q;

Oe[-7x, 0] i€V,

—ay Z / Vil (2t = T(2))(BD + DR)X

1€V,

V(o r —())dx

‘Z’y” / (T (BD + DB)estix
i€V, i

TeT(BD + DB)es¢ dx 52
Z n“f{ e} (BD + DB)es¢ dx. (52)
A 13 i

According to the above analysis and combining condition
(32), one has
Viy+aVie)—a, sup V(r+6)
6€[-7ar, O

) / §T®§4x+‘;: /n f{rtb{dx

“2” / ¢Tel (BD + DR)egdx
{GV

- P EE / (Tl (BD + DE)egd.  (53)
i€V, 4713

Based on condition (32), one has
Vit V) —a,
6

sup V(r+6)<0. (54
€[~ 0]

Further, by using Lemma 2, one has

~ 4t (t=hyA=To)

Vie)y<e sup Vigh+to+6) (55

8e[-740)

for s > #y + T where «, is the unique positive solution of ¢, =

— T,

Moreover, I7(r) = 17(0) for 7 < 0. And for 7 € [0, 4 + 7¢),
it is derived from model (31) with . =0 accotdlng to system
(27). There must exist a large enough ¢ such that d’() L)
fors € [0, 7 + Tp), which means that I7(#) < #17(0) forr €
[0, 0% + 7). Therefore, one has

sup V(ph+1o+06) <P 17(0)
OE[-74,0]

<G I 250) I, (56)

for some bounded constant Cp- 2 0. Then, (55) and (56)
yield

1

2
I2657) IS 7=V )
Cy —a,t
<7 V@)f 4 | 2(.0) 12, - 67

Since (%, 7) = ¢ i(x, ) with 205 < @,, one has

- Cy
I (2 1) ”’;ZWS Am(ﬁ)e (o, +2a)1 Il w(x,0) "i{l (58)

forany 7 > Owith & =
Furthermore,
implies

(R) , which proves the result (33).
the event -triggered control scheme (9)

1
| Q7 (e, 268) — B, 2k + €5) ll 2
<l azQz T (o 15h+ €5 2 - (59)
Due to (33) and (59), one can derive that #(x,7.4) and

(x, 15+ € h) have the same sign, then, the discussion needs
to be divided into the following two cases.

1 1
i ox| Q2o b+ €8) ll 2 — | Q230 1) ll 2l
Qe (x, 13h+ €h) || p2, then we have

1 1
0< (02— 1) || Qi 2eb+ €h) || 2
1
+ 11 Q78¢5 4) I 2
L A2 i
SET-17 7 N Qi sk

1
+ 11 Q757 (5 168) Il (60)

1 a2
which implies that 1 + (02 —1)¢ 2 & 2 0. Obviously,

it holds for any €.
i 1
2 Ifl 0 <l Q2 2eh) ez — | Q28(x, teh + €5) [l c2<||
Q7¢(x12h + €4) || 22, then we have

1 1
0K (07 +1) | Qio(x 12+ €h) |l 2
1
— 1 Q2w 24) llc2
1
[| Q2 (s, 25) ll3,

L &t g,
<(o2+1)e 2

1
= 19257 (x, 1) ll, ©1)

68
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£ A
which implics that (0% +1)¢ 3 72— 1 0. Thercfors,

we have
4
21n<1 +az>

€h>
o, + 20

(62)

The proof is now completed.

a

Remark 3. Based on Theorem 1, it is clear that 7j; can be
obtained, but the sampling period 4 is not obtained. In view of
ETCS (8), one has

h=1y —Tk—mgﬂ{fbl

N,
X iz + ¥in)e (s 1h + €HQe (5, 1h + €1)
i=1
;
>0 ) (vir + ¥R)B" (34, 2 + €HQ(x, b + € B} (63)

=1

Then, in order to obtain 4 we need to know maximum of £4. In

the following, the approach is given to obtain the maximum of
€h.

3.2 | Design feedback controller

In this work, the controller in each Qj is chosen as

#(58) = =K%, 1h), Vi€V, (64)
It is worth mentioning that the subset Q , which includes the
_th controller is independent of the sub-domains ;.

First of all, we define the following variables

_ §
Yo = e — 1y &+ KiQ — 2D - DG

w 4(1 = #;)U;H )
Yo = i = 1y P+ K ~ 8P - DG

M
P, =QA+ATQ+ M +a Q- ——V;+ Y7
LU -

(1—u;)
$a, = QA+ ATQ+ My + @ — ——=(V; + V)
/R
_ A’
Pry, = (,CJL_}WO’,+Y,T)—QD—D,@
o -y 7
Ry = W(y, +Y;)-9QD-Dg;

69

- M
P, = QA+ A0+ M, +a,Q-k—’(y, + Y0
JL

_ 1—u
Pry, =04+ 470+ M +<Z;,Q_( X j)(y/“’y]r)-
JR

In the following, we will give the design of the control gain
K, in the following result.

Theorem 2. For a given positive scalar 0 < 0 < 1, if there exit a
scalarxy > 1 and positive definite matrin O, My, and M, such thar

@-1Q+M,<0, 9, <0, Pz <0

Prp <0, P, <0 (©5)

kolds or if there exist saalars K, > 1), K ;o > 1), and positive definste
matrix O, My, and My such that

@-1Q+M <0, P, <0, Pp, <0

Pr, <0, Pz, <0 (66)

holds where all ¥y, j € V, are auxiliary variables, then the solution
(%, 2) of system (16) satisfies
. . —minfa,~Zag,al
Il BGe2) o< Ce 2 Il #(,0) llza  (67)
Jor £ 2 0. This implies that (13) is exponentially stable, namely, rhe
predictor-based point controller (17) can exponentially stabilise system (7).
Moreover, the comsroller gains Kj, j €V, are derived as K; =
oy,
Furthermore, under the event-triggered scheme (7), if (67) is satisfied,
then then there exist G, 0y, Q,, g, T, and Ty such that

1
2ln (1 +05)
th<

~ minfa, — 2et, et} ©8)

and

€ +1)b<Ty—14 (69)

Moreover, the maximum number of allowing packet loss can be obtained

1
2ln (1 +o‘5>

"~ hminfa, — 20,0} w

g’l’ﬂ%
Proof. Consider the following Lyapunov—Krasovskii functional
v = / BT (6, 1) O, £) doc
Q

which is well-defined continuous for the weak solution. Caleu-
lating the derivative I along system (16), one has
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Pay=—2 [ﬂ 87 (s, )OD (1)
N
+ 2/ ﬁzr(x,t)_QAEz(x,t)dx+22/ 37 (s, )OF o
Q i=1 7

N
=2 ) BT (%, 1)K (%), 7)

7=1

)

with F; = Le %4 (s, 1,5).
By Young’ inequality, there exist a positive definite matrix A
such that

2y /0 &7 (2, 1) OF e < /Q B (o0, £) My (30,2 e

=

£y /n FT QM OF ds. @)

iev,
Then, one has

Y | 7o oras

iev,

=Y / A%8O BT (se, 1, LT QM QL (5, 135 doe
o,

i€V,

<2 / 220401, ALT OM QL5 1B,
Q

<2 / 2902, ALT oM 0L} (11565 7
Q

e i1, )
S GV (1)

< quagr—a,(t—mkrg) sup V(% 15— 9)

0<0<7y¢

< G | u(-,0) |12, 3

for 7 > 0 and some bounded €, > 0 and C, = Cj, ) &40
where the first inequality is from the Young’ inequality and the
third inequality is from the following:

/ (2%, 1, B)T (o6, 1 B)dse

i

4% 7
< = V(o6 128)" Vz(x, 25 dx
Q
4)';.‘)}2
5 des Vi 268)T V(o seh)de

i

70

Ay?
Y
= / V(e 1h)7 Vi 1eh)dx. 74
7 Jq,
From ETC condition (7), one has
(@ = V)57 (135 + € HQ(, 12 + € 5)
+ 257 (5 2+ C B)Qi (5, 135) — BT (o, 15)QB(x, 1:5)
>0. (75)

Similar to (72), there exist a positive definite matrix A/, such
that

257 (%, 1h + 1) Qi 145)

< 7 (o 1h + IR My (5, 16h + 15)

+ B (o 1 H)QM; " Qe 1). 6)
Similar to (73), one has

57 (25, 165)(QM; ' Q + Q) 73h)

< Gl lu(, 0)l a

for 7 > 0 and some bounded C; > 0.

There exists a positive scalar u; € (0, 1) (/ € V) such that
the following inequality holds by using Lemma 3 with x; > 1
and Young’s inequality:

= 287 (3, QK (5, )

Hi

=—=2 [ 37 (%,)(QK; + KT Q)% 1)dx
L Jay,
1—u
£ / 7 (%, 1)(OK; + KT Q)3 1)
Nk Qz

= _Kll;ij /QJL BT (o5, 1)K, + K Q)i 1)dc
3?;(%1—) /o,L VT (4 )(K; + K 0) V(s 1)
’ % /Q VT (o ))(OK; + K] Q) Vi, 1)dx
2 14;::; /0 ' 7 (5, 1)(OK; + KJT )i 1) o

and by using Lemma 3, there exist scalars k7 > 77 and k >
7,z such that

=287 (%, NOK; (%), £)
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B

AT = T v
% )i (o £)(OK; + K] Q)i #)dx
7

Ay

T vl ”
—ﬂz(x)L = ,/r;f Vit (2, 1) (OK; + K/ O)Vib(x, t)de

41— pun;p

— TP [ VT (g 1) OK, + KLO)Vi(oe, £)de
72 (kg — 7)) of e e

1-pu,

/Q T NQK + KDk ()

Mz
Combining Equations (58)—(78), one has

V) + a0

2,

JEV:

<

(/OL Vi (s £ )31y V(e £)doc

- / VT (2, 1), Vidoc, £) doc
nR

7

- -/n’; BT (o 1 Pasi(ec, 1) e + /ﬂf

(% rmmw)dx)

+ 5 (12 + €H)[(0 = 1)Q + My)5(x, 75 + €5)

+ (G + Co)eR) | w(,0) |1,

-y ( [ ke [ g%w)

JEV:
+ (G + Cp)eP%= || u(,,0) |12, (80)

where 3 L; and ¥ &, Are given in Equation (65) and
&= Vol (o) &7 (5]
Y, =diag{py,, ¥zt Wi =diaglpr . Pz,}
Combining Equations (58)—(77) and (79), it is derived that

I;/(t) +a,

)

JEV,

)

JEV,

[, & et B
[ & et Bt

+ (G + Cp)e®=e || w(-,0) |IZ,, . ®1)

71

By applying Schur’s complement to conditions (65) and (66),
one has that
V) S —a 0 + (G + Co)e@2 || w(,0) I2, . (82)
If (ct, — 2a) # &, the comparison principle implies that
(67) holds. If the conditions of Theorem 2 hold for (&, —
20ty) = ¢, they remain true for slightly larger oc; > ., imply-
ing that (67) holds for ;.

4 | NUMERICAL SIMULATION

In this section, a spatial model of cyclically competing popula-
tions is given to illustrate the effectiveness of our results. Con-
sider individuals of three species 4, B, and C, The interactions
between each individual and its nearest neighbors by positions
exchanging at a rate € or by cyclic competition can be shown as

the following chemical reactions:
1 1 1
AB— A4, BC— BB, CA—CC (83)
14 s T
AB— 4B, BC — BO, C4— CO (84)
H “ “
A® — 4B BO— BB, CO— CA. (85)

Reactions (83) shows cyclic prey-predator scenario that specie 4
preys on specie B, and specie B consumes specie C', and specie
C feeds on specie 4, and the predominant species immediate
reproduction after consumption. For simplicity, we assume that
the rate of this reaction is 1 and three species are symmetric.
Reactions (84) is the solely consumption scenario, where empty
site ® implies no reproduction of the predator. These reactions
occur at a rate ¥. Reactions (85) means the reproduction of indi-
viduals of three species 4, B, and C, which happens at a rate
#. Note that these reactions are important for ecological sys-
tems. In (83), an individual reproduces when having consumed
a prey, due to thereby increased fitness. In contrast, in reactions
(85) reproduction depends solely on the availability of empty
space.

Based on the spatial model constructed by [27], where
the diffusion constant D = 2¢/N™" reflects the random local
exchanges of individuals, and diffusivity 2 kept fixed when
N = oo by using a continuum limit of large systems. The spa-
tial system without considering the noise terms can be modeled
as the following DPS:

Bw;(x,
% = d; I\ w5 1) + (e 1) [(1 = ) + wi4
= (1 +¥)mia(x )] (86)

where w(x, HN=1a b K]T stands the densities of the three dis-
tinct species, the total density is denoted by p = 2+ & + ¢, and
N is the system size.
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FIGURE 2 Proiile of evolution of population B without controller
FIGURE 1 Profile of evolution of population A without controller

By applying variational method ro system (86) at the point
wy(x 1) = 0, it is detived that

\

¢}
5 = DA w0 + Av) 67

with 22 = diag{d;, dy, d3}and.4 = u(l — p)/. Itis obvious that
if system (87) is stable, then system (86) is also stable.
Tollowing (4), we consider the following dynamic of predic-

tor:

Oi(x, 1)

——L =D AR t) +Ab(x 1)

Ot
+ LI Y G tih) — 1) (89)
Pyl FIGURE 3 Profile of evolution of population C' without controller
with V, = {1,2,3,4}. competing populations arc respectively shown in Figures 7-9.
Consider the parameters as follows: It is easy to see that the profiles exponentially converge to zero,

that is to say, the point controllers are valid. Tigure 10 shows
D=10"%%, y= pu=>542, p=075 release instants and release intervals; it is clear that the number
of accepted packets by the event-based controller is less than

Choose Ty =15 and 7, =03. Then by using Theo-
rem 1, we choose L = —1.04. It is derived as €4 = 1.08,
ie. h=0.12 by using Theorem 1. Further, choose #(x; 7}
Z,‘ev Ki(wlxp ) —wlxp ), =05, a;=1, 1, =1, =
O.(j3, ‘K1 =72, % Jh ‘Then, one can obtain that
K; ., 10} by using Theorem 2. And
/= 0.12 can be derived by Theorem 2.

Simlation: Choose »{(x.0) = [(1.1.\’1‘71(72—{). 0.2:1)1(7.—{), ().3,\'1)1(72'9()]7‘
‘I'he profiles of evolution for populations A4, B, and € of cyclic
competing populations are respectively shown in Figures 1, 2,
and 3. Obviously, the system on cyclic competing populations
is unstable. Under E'TC, the profiles of evolution for prediction

crror systems of populations A4, B, and € arc respectively
shown in Tigures 4-6. Ttis clear that prediction error systems of

; : p i ~—" 20
populations 1, B, and C are exponentially stable, which means % 0 0
that the predictor model is valid. Under the point controllers,

the profiles of evolution for populations A, B, and € of cyclic FIGURE 4  Proiile of evolution of predicting error figure of populaton 4

72
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wiax,t)

FIGURE 5  Proiile of evolution of predicting error figure of population B FIGURE 8 Proile of evolution of population B with controller

T 20
x 0 0 t

FIGURE 6  Profile of evolution of predicring error figure of population s 2 s %
' 4 omes gl o FIGURE 9  Profile of evolution of population € with controller
the one by using the periodic sampling control method, which

: implies that our method is more economical of tesources and
means that our presented method is better.

superior. For clarity, the toral amount and update frequency
of the sampled data transmitted based on the event-triggered
predicror, the fixed period predicror and the fixed period
estimator tespectively is compared by plotting the evolution

Remark 4. 1t is easy to see from Higure 10 in this paper that
the number of the sampled data accepted by the predictor is
58 with our presented method in the time interval [0,80] and
the number is 666 using periodic sampled-data methods, which

25 T T T T T T T

Release intervals

I

i

i

FIGURE 7  Proiile of evolution of population 4 with controller FIGURE 10 Release instants and release intervals

o LRI 1\”

73
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0.14 including sensors/actuatiors failure and boundary control, the
:""'F future work will study the problems of boundary control and
042 Pl 1 fault-tolerant control [28, 29].
UM_.
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5 | CONCLUSION

In this paper, a class of distributed parameter system with net-
work time-varying delay is studied. In order to eliminate the
time-varying delay and reduce the unnecessary transmission
of sampled data, an event-triggered estimator was proposed.
The estimated error converges exponentially with the expected
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Construct an auxiliary function as follows:
—ab —an
b I
How to cite this article: Ji H, Cui B, Liu X. = [ erdlght—m——g | W@
Event-triggered predictor-based control of distributed = ‘
parameter systems. /ET Control Theory Appi. 2020;1-16. ‘T"‘ %”" 6 03
https://doi.org/10.1049 /cth2.12073 He\ o = 3)

APPENDIX A: PROOF OF LEMMA 3
According to Lemma 1, one has

/ /(6 = fla " QLf () = f ()l

Moreover, it is derived that
L ® 70076+ T @@
<2 / ® T 0s
+ 4@2”—71)2 /;Z %Q%dx (90)

1

1 1
Since (0 is symmetric, one has 0 = 07 07. Then, by using
Young’s inequality there exist constants x; > 1 and k; > 2, —
ay such that

N TX a; _1' N Tx x,
2" Fegrases [ o

+x1(e — @) f T (@)Of (a) o1

75

where ¢is ascalarand © € R" is a vector, and they will be deter-
mined later. Then, one has

WB)=0

z(a)=/;b

—ab —ta
+ecle2 —e2

b
& 1
szcu(:)dr+ﬁ/ (s)ds
e - Ja

€2 +¢2

)

& =%
Ba(n) _ _ = N i
T —ez o)+ m/ﬂ w(s)ds
e =24
+ 72 2 6. 94)

Based on lemma 1 in [30], it is easy to see that for » € [q, 4]

b g
()" 9z(#)
e T ©

b

/ o (w)T Mo (x)dn

[ /jw]

T
3
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It is clear that when ¢ =
proof is completed.
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APPENDIX C: I’ROOF OF LEMMA 5

Define g(s) = m fora < s < b Itis easy to see that
€
4 a2<2¢x(x~a) = ea(&—;))
) = —— 7
R = = ) )

which means that function g(s) is monotonically increasing for
+b 5 5 = 3 +b
a<s< HT,a.nd it is monotonically decreasing for JT <s<Lbh

ath
Namely, g(a) < () <&(=)-
Then, according to Lemma 4, one has

4 T
dw? (s) dao(s)
a(s—b) 3
/ﬂ ¢ e M p ds
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250 (8 M +E ME +28]YE),  08)
where the last inequality is from the reciprocally convex
approach [31] with (26).

This proof is completed. O
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