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ABSTRACT

In this paper, we introduce an abstract KAM (Kolmogorov-Arnold-Moser) theorem. As an application, we study the two-dimensional com-
pletely resonant beam system under periodic boundary conditions. Using the KAM theorem together with partial Birkhoff normal form
method, we obtain a family of Whitney smooth small-amplitude quasi-periodic solutions for the equation system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0183958

I. INTRODUCTION AND MAIN RESULT

Many partial differential equations (PDEs) arising in physics can be seen as infinit dimensional Hamiltonian systems. In 1998’s ICM,
Kuksin stated that we do not know what happens to invariant tori of an n-dimensional (in space) linear Schrodinger equation with n > 3 and
of a linear wave equation with # > 2 under Hamiltonian perturbation. The dynamics of linear Hamiltonian PDE:s is quite clear. The general
problem discussed here is the persistency of quasi-periodic solutions of linear or integrable equations after Hamiltonian perturbation.

Bourgain"” proved the existence of quasi-periodic solutions for space multidimensional Schrodinger and wave equations,which gave
an affirmativ answer to Kuksin’s open problem. Bourgain made use of Lyapunov-Schmidt procedure and a Newtonian scheme developed
by Craig, Wayne, Bourgain (CWB method for simplicity)."” The scheme of CWB avoids the cumbersome second Melnikov conditions by
solving variable—coefficien homological equations. The method is less Hamiltonian and more flexibl than the Kolmogorov-Arnold-Moser
(KAM) scheme to deal with resonant cases. This approach is particularly inspiring for PDEs in higher space dimension but to a high cost: the
approximate linear equations are variable (quasi-periodic in time) coefficients The disadvantage of CWB method is that one knows nothing
on the dynamics around constructed quasi-periodic solutions.

Constructing quasi-periodic solutions of higher dimensional Hamiltonian PDEs by method developed from the finit dimensional KAM
theory appeared later.'””" The advantage of the method from the finit dimensional KAM theory is the construction of a local normal form in
a neighborhood of the obtained solutions in addition to the existence of quasi-periodic solutions. The Birkhoff normal form analysis implies
that the frequencies of the expected quasi-periodic solutions vary with their “amplitudes,” allowing to prove that the Melnikov non-resonance
conditions are satisfie for most amplitudes. The nice normal form is not only an important outcome of the KAM theory, but also a very
important ingredient in the proof. The normal form is helpful to understand the dynamics of the corresponding equations. For example, one
sees the linear stability and zero Lyapunov exponents. All those methods are well developed for one dimensional Hamiltonian PDEs, however,
they meet difficultie in higher dimensional Hamiltonian PDEs. A satisfactory future is under construction.

Geng-You'”'® proved that the higher dimensional nonlinear beam equations and nonlocal Schrodinger equations admit
small-amplitude linearly-stable quasi-periodic solutions. By exploiting the Toplitz-Lipschitz property, Eliasson-Kuksin'® developed a modi-
fie KAM method to construct quasi-periodic solutions for a more interesting higher dimensional Schrédinger equation. They require a subtle
analysis and the introduction of the concept of “T6plitz-Lipschitz matrices” in order to extract asymptotic information on the eigenvalues,
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which is important to verify the second Melnikov non-resonance conditions. An essential ingredient in Ref. 13 is that finitel many Lipschitz
domains cover a neighborhood of co. By developing the ideas of Ref. 13 and constructing suitable partial Birkhoff normal form, quasi-periodic
solutions of two dimensional cubic Schrédinger equation with periodic boundary conditions are obtained by Geng-Xu-You.'” By carefully
choosing tangential sites {i1,...,i,} € Z?, there is at most one case of complete resonance for n € Z*\S, which provides convenience for
solving homology equations and obtains no more than fourth-order linear equations, the authors proved that the above nonlinear cubic
Schrodinger equation admits a family of small-amplitude quasi-periodic solutions. Procesi-Procesi® studied more difficul completely res-
onant nonlinear Schrédinger equations (NLSs) on T and T¢, respectively. The proof of these above conditions is rather complex and takes
fine combinatorial analysis.
Recently, Eliasson-Grébert-Kuksin® considered nonlinear beam equation without conservation of momentum

utt+A2u+mu+8uG(x,u):0, teR, xeT%

They proved the existence of invariant tori for typical m by skillfully choosing admissible set of tangential sites and if d > 2, then not all the
persisted tori are linearly stable. Bernier-Feola-Grébert-Iandoli’® obtained long-time existence for semi-linear beam equations on irrational
Tori. Ge-Geng-Lou®” proved the existence of KAM tori for a class of two dimensional (2D) non-Hamiltonian completely resonant beam
equations with derivative nonlinearities. But there is few result for quasi-periodic solutions of coupled beam system. Shi-Xu*® proved the
existence of a Whitney smooth family of small amplitude quasi-periodic solutions corresponding to finit dimensional invariant tori of an
associated infinit dimensional dynamic system for higher dimensional beam equation system

2 2
{um+A Uy +ouy +uju; =0

2 2
Uy + At + pus + ujup = 0

under periodic boundary conditions, where o, y are real external parameters used to avoid resonances. When the equation system have no

external parameters, one must deal with the resonances. Bourgain proposed the idea of choosing an appropriate set of tangential sites wisely,

such that the Birkhoff normal form Hamiltonian admits quasi-periodic solutions which excite only the Fourier indexes of the tangential sites.
In this paper, we consider the nonlinear completely resonant beam equation system:

, teR xeT? (1.1)

2 2 2 2 3
Ui + Auy + up|[Vur|” + uyAug + 3uju; =0

2 2 2 3 2
o + A"up + Ua|Via|” + usAuz + 3uju; = 0

under periodic boundary conditions. We shall use the admissible set of Ref. 37 on
thndd = {(nl,nz) 1Ny € 27, — 1,1’12 € ZZ}

which satisfie
Proposition 1 (Structure of admissible set T c Z.2,,).

1. Any three different elements i, j,k € I are not vertices of a rectangle.
2. Foranyn e Z1;\T, there exists at most one triple {i,j,m} withi,j € T,m € 72\ T such that

n-m+i-j=0,
|nf* = [m” + [il* = |ji* = 0.

If it exists, we say that n, m are resonant of the firs type. By definition n,m are mutually uniquely determined. We say that (n,m) is a
resonant pair of the firs type. In symbols, n,m € L;.
3. Foranyn € Z2,,\Z, there exists at most one triple {i,j,m} with i, j € T,m € Z%;;\ T such that

n+m-i-j=0,
I + Jmf? = |if” = [j/* = 0.

If it exists, we say that n, m are resonant of the second type. By definition n, m are mutually uniquely determined. We say that (n,m) is a
resonant pair of the second type. In symbols, n,m € L,.
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4. Anyn € 72\ T is not resonant of both the firs type and the second type, i.e., there exist no i, j,k,1 € T and m,m’ € Z2,\T, such that

n-m+i-j=0,
nl” = [m|* + Jil* = |jI" = 0,
n+m —k-1=0,
[nf” + [m[* = K = 1" = 0.

It means that L1 L, = 0.

Assume parameter set O ¢ R? is a bounded set with positive Lebesgue measure, and any parameter

E=(&,8) = G- 80,0 8i,) € O

satisfie
& - &> C.

We fin that the normal frequencies of (1.1) have the form
1
th = |}’l|2 2 Z (72 | |2 )Ehv ne Zodd\I h = 1,2.
i€l

and satisfy a gap condition

|an - QZn' Z (| |2 ‘ |2 )(511 EZ:)' >

i€l

which can help us eliminate the resonance caused by the coupling of equations. The derivative nonlinearity plays an important role in our
proof. For nonlinear beam equation without derivative nonlinearity, the normal frequency has the form

§

2
~ |n| +?.

When # is large enough, the gap condition does not hold. Using this gap condition, coupled system of wave equations with derivative
nonlinearity (DNLW) in Refs. 39 and 40 can also be studied by KAM iteration. For example, DNLW in,”

Uy — e +mu+ f(\/ O+ mu) =0

has normal frequency
m
Qn ~ — +O(¢).
mt ot €3]

For DNLW system

Uy — Use + mu+ f(\/=Oxx + m u) + Py(u,v) =0,
U — Uxx + MU + f(\/=Oxx + m v) + Py (u,v) =0,

where P(u,v) is small perturbation. The normal frequencies satisfy
m
Qp~n+ —+0(), h=12
hn ~ 1 o (&n)

and
|15 = Qan| ~ O(J&1 - &1).

The KAM theorem of Berti-Biasco—Procesi in Ref. 39 should also be valid for DNLW system.
For instance in the more complicate case of quasi-linear coupled wave and beam equation systems in,"""”

Ut + Usxx + Pr(%, 1, Ug, U, U, Ur, Vs, Uxx ) = 0,
Ut — Uxx + Pa (%, 1, g, Uy, Ux, U, Vs, Uxx ) = 0,

the KAM method described in this paper does not work.
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Then we state our main result.

Theorem 1. Let T = {i1,...,i,} c Zy; be an admissible set. There exists a Cantor set O of positive-measure such that for any &
= (&, ..., &) € O, the nonlinear completely resonant beam equation system (1.1) admits a small-amplitude, quasi-periodic solution of the
form

b 3
ur(t,x) = Y \/&y cos (it + (ij,x)) + O(|61P)

j=1

b 3
ua(,x) = 3\ [y, cos (wayt + (ijsx) + O([&2]?)

j=1

(1.2)

where wyi, = € *[i;|* + O(|&1]), wai, = & *[ij* + O(|&)).

This paper is organized as follows: in Sec. II we give an infinit dimensional KAM theorem; in Sec. III, we give its application to two-
dimensional nonlinear completely resonant beam equation system.

Il. KAM THEOREM

In this section, we will formulate an infinit dimensional KAM theorem that can be applied to two-dimensional nonlinear completely
resonant beam equation system under periodic boundary conditions.

We start by introducing some notation. For given b vectors in Z2;, say Z = {i,...,i,}, we denote ngd’l =72,)\T. Let z,
=(e s Zhm - ')"57‘5441’ h =1,2, and its complex conjugate zj, = (..., Zp, - - ')”Elﬁdm' We introduce the weighted norm

lzlp = 3 lennle™”,

2
neLy 4

where |n| = \/n{ + 13, n = (n1,n) € Z2,;and p > 0.
Denote a neighborhood of

T x {1, =0} x {z1 = 0} x {21 =0} x T’ x {I, = 0} x {z2 = 0} x {z = 0}

by D,(r,s) =

{(61,11,21,21,92,[2,22,22) : \Im 9h| <r, |Ih‘ < 52, HZhHP <s, HZ;,HP < S,h = 1,2}, (2.1)

where | - | denotes the sup-norm of complex vectors. Moreover, we denote by O a positive-measure parameter set in R%.
A function f : Dp(r,s) x O — C is real analytic and Cjy (i.e., C*-smooth in the sense of Whitney) in £ € O and has Taylor-Fourier series
expansion

f(6.1,2,%8) = > Fuaep(€)FO1'2°2F,

72
27
keZZb,leNZb,a,ﬁEN odd,1

2 2
where (k,0) = > ¥ kyy I' = TT T1 1" and

h=1 i€l h=1 i€l

- o - i K- i
2P = IT zl;JZflj’zz;’zf;’, (2.2)
2

J€Lga,

a=(a,02),f=(Pp) € N*%i1 have only finitel many nonzero components. We defin the weighted norm of f as follows

1flo,s0 = sup > |fuagloe™sM2%27), 2.3)

lellp<slizlp<s k.1a,8
h=1,2

where |fklaﬁ| o = sup 2 |8¢5fkl¢xﬁ‘-
£e00<i<4

To a function F, we associate a Hamiltonian vector fiel define by

Xk = (Fb ~Fo, {iFz, }Yerz,, o A=1Fz ez, )
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Its weighted norm is define by [the norm | - |, (), 0 for scalar functions is define in (2.3). The vector function G : Dy(r,s) x O — C",
(m < o0) is similarly define as HG||DP(,)S),O =y HGiHD,,(r,s),o]

2
1
1XFl, .0 = 22 IFnln,re)0 + ;\\Feh I, (rs),0

h=1
1 1
tosup | = S B, fod™ 4= 3 B0l (2.4)
Dy(rs) ”Ezfvdd,l s ”eZz[m,l
1 1
+ = S By lod™ = 3 |E, o™ | (2.5)
”ezidd,l nezgdd,l

We now describe a family of Hamiltonians studied in this paper. Let

Hy=N+ A+ B+ B,

N ={(w(§).I) + Z [Q1n(E)z1nZ1n + Q20 (&) z2nZ2n ],

nez2,,,
A=Y Qn[\/mzlnélmeiﬂu—iﬂv +\/£T£2j22n22meiezi—iozj])
ne L,
B=Y" Qn[\/mzlnzlme—iel,-iel, +\/52i_52j22n22me—i92,—i92,])
ne L,
B= Z Q, \/ffoljZ1n21mei6“+i6” +\/£T£2j22n22meiﬂz,v+i92):|,
ne L,

where & € O is a parameter.
The system admits special solutions

(61,0,0,0,6,,0,0,0) - (61 + 11,0,0,0,6; + w>t,0,0,0)
that corresponds to an invariant torus in the phase space. Consider now the perturbed Hamiltonian
H=Hy+P=N+ A+ B+ B+P(0,1,2,%¢).

Our goal is to prove that, for most values of parameter & = (£1,&,) € O (in Lebesgue measure sense), the Hamiltonians H = N + A+ B+
B+ P still admit invariant tori provided that || Xp|| D,(rs).0 18 sufficientl small. One should not expect a KAM theorem for general infinit
dimensional Hamiltonian systems.

For this purpose, we need the following six assumptions:

(A1) Nondegeneracy: The map & = w(£) is a Cjy diffeomorphism between O and its image.
(A2) Asymptotics of normal frequencies:

Q=€ *(|n]*) + Qpy m€ Zlgqr, h=1,2, (2.6)

where Q) € Cj,( O) with Cj,—norm bounded by a positive constant L.
(A2%)  Gap condition of normal frequencies: There exist y > 0, such that

Q8 =l >y 1€ Ziguy. (27)
We fin that the normal frequencies of Eq. (2.7) satisfy a gap condition which can help us eliminate the resonance caused by the
coupling of equations.

(A3) Melnikov’s non-resonance conditions: Denote

My, = th n¢ Zudd,l\(l:l U ['2);

Mo = Qi + W Qn ne Ly
" Qm Qi + W ’
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Op-wp  ~Q
M, =( hn~ Whi Q ) ne Lo
Qm ~(Qpm — wpj)

Suppose Qu, Qs Q> Qm € Ciy (©) and there exist 7 > 0, such that

Ik, )] > ﬁ k 0, 2.8)
| det ((k, @)L(ny + My)| > ﬁ (2.9)
\det ((k’w>1(p(n)q1(n') + My, ® Iq)(n') + I(p(n) ® Mh'n')| > #, k+0, (2.10)

where I, is a x a identity matrix, ¢(n)(resp.¢(n’)) denotes the dimension of My, (resp.M,, ). det(-) and ® denotes the determinant
and the tensor product respectively.
(A4) Regularity of A+ B+ B+ P: A+ B+ B+ Pisreal analyticin I, 6, z,z and Ciy-smooth in £. In addition

”XA”D(Y,S),O + ”XB”D(r,s),O + ”XEHD(r,s),O <1 ”XPHS;D(r,s),O <&
(A5) Momentum conservation property of the perturbation: A+ B+ B+ P admits momentum conservation such that

A+ B+B+P= > (A+ B+E+P)kla,;(f)llei(k’e)zaéﬁ,

2
keZZh,leNZh,a,ﬂsNZZMl

where k, «, 8 have the following relation

2 b
Z khjij + Z (@ = Bru)n | = 0.
h=1 \ j=1 neZidd’l

(A6)  Toplitz-Lipschitz property: For any fixe n,m € 72,5, ¢ € Z2,,\{0}, h = 1,2, the limits

82( Z anzhnéhn + A+ P)

2
nEand,l

2
lim 2 (B+P)

. 9 (B+P)
- ,  lim
f=oo 8Zl1n+tcazhm—tc U 8Zl1n+tcazhm+tc

f=oo 82hn+tcazhm—tc

exist. Moreover, there exists K > 0, such that when ¢ > K, N + A + B+ B + P satisfie

P Hy, *H,

. E _|n—
— = lim —F—— < -e In m‘p,
82hn+tcazhm+tc tooo 8ZthrtcathHc D,y(r.s),0 t
with
0 _
Hi= > QpZinZim + A+ P,
nels i
2 2
0 (B+P) _ lim 0 (B+P) <§€_|n+m‘l)
< >
aZhn+tcazhm—tc tﬂwazhn#—tcazhm—tc D
p(rs), O
2/ 12 2/ 12
9°(B+P) . 9" (B+P) € _|ntmlp
— — — lim — - < -e .
8Zhnwttcazhm—tc tﬂ‘x’azhnﬂcazhm—tc D
o(r.), O

Now we are ready to state an infinit dimensional KAM Theorem.

Theorem 2. Assume that the Hamiltonian Ho + P satisfie (A1)-(A6). Let y > 0 be small enough. Then there is a positive constant e,
depending on b,L,K, 1,y,r,s and p such that if |\Xp||Dp(r!$))O < ¢, the following holds: There exist a Cantor subset O, c O with meas (O\O,)

1

= O()H ) and two maps (analytic in 6 and Ciyin )

¥ T x Oy > Dy(1,5), @:O) — R?,
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where WV is y%—close to the trivial embedding ¥ : T® x O — T? x {0,0,0,0,0,0} and @ is e-close to the unperturbed frequency w, such that for
any & € Oy and 0 € T, the curve t - ¥(0+ @(&)t, €) is a quasi-periodic solution of the equations governed by Ho + P.

Because (A2*) conditions lead to the cases k = 0,h = h',n = n’ in (2.10), the Proof of Theorem 2 is almost identical to the proof in Ref.
15. Thus we do not repeat the KAM steps in this paper.

I1l. APPLICATION TO THE COUPLED BEAM EQUATION SYSTEM

We consider the two-dimensional nonlinear completely resonant beam equation system

2 2 2 23
Uiy + A"uy + ) |Vur|” + ujAug + 3uju; =0
{ 1tt 1 1| 1| 1 1 142 ,tER,xETZ (31)

o + Nuy + uleuz|2 + u%Auz + 3ufu§ =0
with periodic boundary conditions
uh(t,x1 + 27T,x2) = uh(t,xl,xz + 27‘[) = uh(t,xl,xz), h=1,2

Scaling uy, — e"u,,h =1,2. Let vy, = up, and

1 1
(=4): i(-a)":
wy, = up — Vpe
h \/z h \/z h
For w = (w1, wz), we have
w —iaH
T ow

and the corresponding Hamiltonian function is
H=H +H, +G,

where
€ s wy + o\ o v+ van T
Hi= [ [(~A)w]ind 7f A A dx,
1 sz[( Jorfindss TZ[( ) ( V2 )] [( ) ( V2 )] *
¢ w, + w2\ vw, + v, \ |
H, = —A)w, |wad 7f BN ekt N AR LY | I
= Licoymma ? [ a2 )] cot (T T w
3 3
-1 _1fw +w _1fwy+ w2
szf Ay Ay dx.
3T2[( )(ﬁ)H( )(ﬁ)]x
Let tangential sites Z = {i1,. .., iy} ¢ Z2,,. Under periodic boundary conditions, we denote the eigenvalues of A by A, n € Z2,,,

oy = A = [5°s 1<j<b, Qpu=Aa=nf’, neZog,

and the corresponding eigenfunctions ¢, (x) = ¢!

E d 2n
xpending
wi(x) = D Gun(x)s W(x) = D Gunp-n(x),
neZs neZl

system takes the lattice form

I = 1| A +58G +828G
dhn = nGhn 86—]hn 5%

Ganin =1 f. [t () T (P ) s

Saninani) = [ [(_A);(wljzwl )] [<—A>;(wz¢+§wz)] dx

and
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with corresponding Hamiltonian function H = H; + H, + &G with

Hy = Z /\ﬂqhnqhn + SG(qhm th)

2
neL .,

We have
G(qman) = Y, Ghaﬁqiéf
el iles
and
G(q1,1, 42, ¢2) = Z Gaﬁaﬁqlq’fqzqf

lal+1f1=3

Then we have Gpag = 0,if 3, ez, (an = Ba)n # 0and G(q1, 31,92, 32) = 0 if

> (an-p)n+ Y (@ pa)no.

2 2
nsZmM néZadd

Like Poschel’s conclusion,”” we ignore the constant factor % Thus the function G = G; + G; in the above takes the form:

Gu(g:9) = <k h Qh njGnkqni + Gnidnj Qhk%)
i+j+k+1=0 4(277) VA4idiAA ’ ’
(k. I) = (j k)
+ GriqGhignkqnl + Gnidninkgn
iitii=o 2(2m)*\/Aik; Aklz( / / )

. Ak, 1) - (j. k) — (i, >(qh Qnidnknt + nidniQndn )
imitkeimo 4(2m)° /ANy J J

Z 02 03 04
Eh.oviasjosk, UAIqhz 4 j9nk It
a1 i+0yj+0a3k+ayl=0
01,0,03,04=%

By direct computation, one can verify that the gradient of G, G satisfie the following regularity property.

Lemma 3.1. For any fixe p >0, Gy and Gy are real analytic as a map in a neighborhood of the origin with

3
1Galle < clall,
and
1Gallo < clal-
For an admissible set of tangential site Z = {i,...,i,} c Z2,,, we have a nice normal form for H.

Proposition 2. Let I be admissible. For Hamiltonian function H, there exists a symplectic transformation ¥ such that

HoV¥=(w(&),I)+ > [Qun(&)zinzin + 0u(§)zanzon] + A+ B+ B+P,

ez

where

—4.2
wpi =€ i

1 1 1
—_ + — , ieT,
prercili g (m Ik )E’”

JELj#i

Qi =€ ‘n| ZZ (| |2 | |2 )Ehz» ne Zoddl)

i€l
= i0);,—i0); - 05— 0y
A= Qn[\/fufljzmzlme T4\ &ibsjzanzame 2’],
ne Ly
- —i6y;~i6) —i0y—if)
B=Y" Qn[\/ &ibjzinzime T + \/&ibsizanzome ’2’],
ne Ly
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Z [\/ 51151;21n21m€i9“+i91j +/ fzifzj22n22m€i92‘+i62’],
<L
|P| = ( 1P+ &1zl + €82 |zl + £zl + €8 + 28 2],

+e8el}+ £8 |z]7):

and where
4(i,j) + 4(m, n) + 4(j, n) + 4(i,m) — 4(j, m) — 4(i, n)
Qn = 210
, (2m)7[ijl|m||n]
o, Am = (mon) - (i)

(2m)?[iljl|m|n]
Remark 3.1. The term G only provide couple terms in P, thus we do not calculate its normal form.

Proof. The proof consists of several symplectic change of variables. For convenience, we defin three sets as following:

. itj+n+m=0
$1=3(hm) 2 i im0

f zn{ijn,m}>2

and similarly

. itj—-n+m=0
S22  Am) s o pap a0

f zn{ij,n,m}>2
. i-j+n-m=0
S3 = (l,], m) : [iP=liP+nP—|m]=0 [
p Z0{ij,n,m} =2
Firstly, let
F=3 ie o (@t + ailgiimdiim )
T+ An + /\m gh,t,],n,m qhzqh]qhnqhm qh:thqhnqhm
i€ _ oL _
+ Z mgh,i,j,—n,m(‘Zhithqhnqhm + th%j%n%m)
i€ _ _ _ -
+2 Mi—dit A, — A gh,i,—j,n,—m(th%thnqhm + ththqhnqhm)

and X} be the time one map of the flo  of the associated Hamiltonian systems. The change of variables X} sends H to

HoXp=H+{HF}+ fl (1- t){{H,F},F} o ¢pdt

=3 Mlqul* + Z Malqual” + 3 - |6111

i€l neZ i€l

€ 5 & 2 2
5 227,2|q“| |q1j| + 3 W\qul [qyj]
ijezizj <70 li ieTjeLyy, 7l

Y laillayf

ieZ,jeZidd’l 2 M

+ Z eQu(q1iq1jq1ndim + q1iq1jq1ngim) + Z son(QIiQIquqnn + qud1jq1nq1m)

ne Ly neL,

+ > gl + Y Aulganl? +Z |¢121

i€l i€l
n€Zg,

£ 2 € 2 2
Z WHM lay|” + Z W\‘JM |21

ije Li%j ieTjer?, |

(3.2)
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£ 22
Z 27_[2|j‘2 |q2’| ‘qu‘

i€ je2,, |

pubs.aip.org/aip/jmp

+ Z eQn(q2iG2iGonom + Q2iqG2iGongom) + Z €Qu (92192320 Gom + G2i@2iG2ngam)

ne L, ne L,

3 4 6 5 4 2 3 3
+ O(lqllwl + [wlp + g +lal [wlp + lql" |wl + gl [w]p)-

where 4(is]) + 4, n) + 4(j, ) + 4(i, m) — 4(j, m) — 4(i, n)
Qn = 201 -
| 2 ililmln
6, - Him) ~ (mn) - (i)

(@m)?[iljllmln]

We remind that (#,m) are resonant pairs and (4,5) is uniquely determined by (n,m). Here we need to state a fact: The set

i+j—n+m=0
{(i,j,l’l,m)Engd: Py }

[i* + [jI* = [nf* + m]* % 0

do not exist in Z2,, thanks to the structure of Z2,;. The next thing to do in the proof is introduce standard action-angle variables in the

tangential space

0y - —i6y .
qhi = \/Ihi+£hiel " Gni = i + &ie hde T,
and
_ _ 2
Gin = Zhn> Ghn = Zhn> 1 € Lodd -
Then

1 &
HOXF:Z[Ai+47T2|i|ZEU

i€l

1 1
2 Zje;qtz (F " .|2)£1j:|lli
+ Z [ ZZ (| ‘2 %)E ]Zlnzln

€Ly fez
|2 )52]:|121

1

+ Z |:A1 2| |2£21 (W
i€eT ]EZ]#!

+ Z [ 2 Z (| ‘ 12)£Zt:|ZZnZ2n

nez2,, | ieT ||
S 06y S i0y—if
+ SQn[\/ Suibjzinzime Y + ) Eubyzanzome 2’]
ne L,
+ Z €Qn[\/ fufu(zmzlme_ig"_ie'j +21n21meia"+i6”)
ne Ly

+ m(zzﬂme—iez‘—iezj + 22n22mei92,+i92, )]
+ O(elIP +eltllzl; + &€ 213 + elzls + £€ + &3 [
+ £8)2); + 28 |2

Finally, by the scaling in time

E-e8 16

we finall arrive at the rescaled Hamiltonian
H-= s_gH(£3f, £1,6, sgz, 822)
= (w(§),1) +

neZl

Z [an(f)zlnéln + an(E)Zanzn] + A+ B+ §+ p,
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where
Wpi = 5_4‘i|2 + %ghi P Z ( )fh], ieZ,
477" M ]EIJ# | | ‘
—4 2
Qh” =¢ ‘H| ZZ (| |2 | |2 )E’”’ ne Zaddb
i€l
A= Z Qn[\/ f1i51j21n21m619“_16” + \/ETEZjZZnZZmeZG”_iGZf],
neL,

o —if—i0); —i0y—if)
=>Q [\/ Sibijzinaime Y+ &ubsizanzome Z’],
ne Ly
Z [\/ Elifljzlnzlmeiguﬁglj +V fzifzji'znézmeie”ﬂez’ ],
<L

1Pl = O(&1P + 121 + e&2 2]} + £zl + €8 + £ ]

+e8el} + £8 |z]):

Next let us verify that H = N + A+ B+ B+ P satisfie the assumptions (A1)-(A6).
Verificatio of (Al):

Owi - Owy
Ow | 08 &
o | 9wz 0wy
0, 0§
1 2 2 2 2
T2 Tt ne 0 etz
Ji1] il o] i il
2,2 e 2,2
dwi _dwy 1 152 7 iy P |io? o Wl |~ 4
08 0&  4n? ) .
2.2 2 2 1
2 P (P P |i] bxb
(9(01 8(4)2

—— = — = = 0pup
o5 o5

Thanks to Sec. 3.2 in Ref. 37, det ( 3¢ 9w 1) = det (5¢ %, %) # 0. It is easy to check that det( ) = det (3¢ L 1) - det (5 9w, 2) #0.
Thus (A1) is verified
Verificatio of (A2) and (A2"): Take a = 4, we can move ¢ to get

107, - Q| = Py Z (| R )(flz Exi) > yi11 € Liggq.

i€eT

Thus (A2) and (A2") are verified
Verificatio of (A3): For h = 1,2, My, read as follows:

My = Qs 1€ Zirgqy \(L10 L2),
Q ,
Mhn=( hn + Whi Qn ) ne Ly,
Qm Qpy + wp;

Op-wy  -Qu
M, =( hn~ Wi Q ) ne Lo
Qm ~(Qpm — wpj)

This part is the same as Ref. 37. In the following, we only give the proof for the case: n € £1,1n" € £,

<k, w)I4 +t M, L +L ® MZn"

6%:65-20 ¥20Z dunr L0
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Seta = 8_4(|i1|2,|i2|2,. o |ib|2),51 = (& &y - 606,), 6 = (& &iys -5 84y),
_L(L+L+LL+L+ 2 1.1 .2
“ lal "B P P B [P P B P

1 1
Oap = — | —> L1...,1),
o zn2(|a|2 b )( )

withae {n,m,n',m'} and b € {i,j,i,j'}.
Its eigenvalues are

2k, a) e (nf? + i) £ e (0~ 17) + (Ak £ v &) + (Ak £ D,y

Lo b VAL L L VA
8712|i|2 li 87'[2|j|2 1 2 8n2|il|2 2i 87‘[2[]',‘2 2j >

2

where
A=H & + Hi& + (~2HiH;j + 4QuQu ) 1:y),

A= Hiz’fii’ + sz’fgj’ + (ZHi’Hj’ - 4Qn’Qm’)52i’£2j’s

with H; = W,H i= W. Hence all the eigenvalues are not identically zero due to the presence of the square root terms thanks to the

difference between &; and &,.
(k, )4 + M1, ® I + I ® M,,; is polynomizl function in & of order at most four. Thus

1
|0 det ({(k, @)y £ M1, ® b+ L, ® M,,)| > 5|k\ #0.
By excluding some parameter set with measure O(yi ), we have
|det((k,w)sx M1 ®L+L®M,, )| > |k|T’

The casesk =0,/ = h',n =’ in (2.10) can be verifie by (A2%). We consider one case for n € L1,

Qun + w1i = Qon — Wi 0 -Qi Qn 0
di Qun + w1i = Qom — Wy -Qu 0 0 Qn
iag + )
Qum + w1 — Qo — w2 Qm 0 0 -Qn
Qum + w1j = Qom — w2 0 Qn -Qu 0

Although |i* + |n|* — |m[* - |j* = 0, the diagonal part still has

diag

= + —
') ]
Soer 2+ o )60~ 0
- 8) T (W . W)““ &)
(-8, 5 (fz i) % (B )
+ diag U I e T,i#i ! || i€ T,i%j i H
&_9) (IJ fl?)_ (Ezi ‘fzz)
(m i)z ) 2

zeIz#; i€ I,i#i

1 1
i 80+ Dy o+ )-8

pubs.aip.org/aip/jmp

k+0,ne Li,ne L,

&)
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we can move ¢ to make

Qun + w1 — Qon — w2 0 -Qn Qu 0
Qun+ @i — Qo — i | [ - 0o 0
det (dlag n+ Wi 2m — W2 4 Qm Qn ) > y.
Qum + w1j — Qon — Wi Qm 0 0 -Qu
Qum + wij = Qom — wyj 0 Qn -Qu 0

In other cases, the proof is similar to Sec. 3.2 in Ref. 37, so we omit it. Thus (A3) is verified
Verificatio of (A4):ForagivenO0<r<lands= e, according to Lemma 3.1, |G, < c|q[, then

3 2 3
> 1Pallod™ + X P, [0e™ = [Pofp+ [Pl < clql; < (11 + [217)-

2 2
nEL 4, nELi 4,

In addition,

sup [Gllo<csup |qfp<es’,
llall,<2s llall,<2s

thus

”PHD,,(Zr,Zs),O = Ssup HP” o< CS4.
D, (2r,2s)

According to Cauchy estimates,
HPIHDP(V,S),(') < CSZ’ ”PQHDP(r,s),O < 534’

then

1
1Xp (b, r.5),0 = IPrlp,(r.5),0 + 7z IPell, (rs).0

1 1
S P LA e I | A P

D,(rs 2 2
p( ) neZW,‘il neanMl

4
1 3
<ot —CSZ +csup 7(|I|; + ||sz,)
s Dy(rs) S

2
<cs <Lce

Thus (A4) is verified
Verificatio of (A5):

0,y +131,i1
P= Pop\/Tuiy + &
2 .
> | Z kit X (@m—Bua)n |=0
= §= nez?
odd,1
Li, TPy 00,1y +B2iy 2, +Po,
Vi, + &, V6L + &, <Dy, + &,
X 2 b 2 b 2 b
iX % (@ =Pri)Oni a= X X anieni P=X X Puijen;
x g =171 z h=lEl 7 h=lj=l .
Letk = (ki .- kop) = (ani, = Priss- - > 024, — Py )>

P- 3 Praap(8)e 0 1'2°2F,

; (e =Ppn )1 |=0

"L d,1

2 b X
hgl ;§1 k;,}»1]+
where k = (ki k2), ki € Z%,ky € 251 € N*, o, p € N?%ax has the following relation

2 b
Z khjij+ Z (‘xhnfﬁhn)n =0.
1

= i= 2
h=1 \j nezl .
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Then (A5) is verified
Verificatio of (A6): We only need to check F satisfie (A6), then refer to Lemma 4.4 in Ref. 15, the X} preserves (A6) property of G, G.
Recall that (3.2), F is given as

i€
F=) — g i G dnd 3
= Ai +/\j ¥ Ay +/\mgh,l,}m,m(qhzqh]qhnqhm + %%ﬂhn%m)

+Zi78._ (aidn + QG
= Ai T /\j — /ln n /\m gh,l,},—mm qhzqh]qhnqhm %q;q%n%m

S i+ D)
P} Ai _ /\j n /ln — /\m gh,l,—],m—m th%ﬂhn%m qhzthqhnqhm .
Then for ¢ large enough and V¢ € Z2,,\{0}, we have

ic _ _
X=X+ Arte — Aot 8hi—jn+te,—(m+tc) GhidhjGhn+tcGhm+tc
i~ Aj n+te — Am+tc

irj,n,m,th
ie

simamen 17 = [ + |nf* = |m[* +2t(n — m,c)

&hyi,—j,n+te,—(m+tc) qhithqh,nﬂcqh,mﬂe

According to the mathematical analysis, we obtain the limits

(4m+4n—-i-j,c)

tl_ifl;gh,i,—j,n+tc,—(m+tc) = W

2
— 0 Tim —PF e
Hence, when (n — m, c) = 0, tll}})lo 5797 existsand
&°F . &°F € _|n-mlp
|l s—— - lim ——F—| <-e .
8Zn+tcazm+tc t—oo azn+tcazm+tc t
when (n—m,c) + 0 lim ~2F = 0and
’ ’ t—o0 0241 0Zmc
&F £ _jp-
| s -0 < Ze"
OZn+tc0Zm+ic t
Similarly,
&°F ) &°F O*F ) O*F € _lwsmlp
| — lim |, | == _ — lim — - | < -e .
0Zn+1c0Zm-tc 120 OZn41c0Zm—tc OZn+1c0Zm—tc 120 OZn+1c0Zm—tc t

Thus (A6) is verified
So we have verifie all the assumptions of Theorem 2. By applying Theorem 2, we get Theorem 1.
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